Continuous-time statistics and generalized relaxation equations

被引:1
作者
Scalas, Enrico [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS; FRACTIONAL CALCULUS; MODELS; DYNAMICS;
D O I
10.1140/epjb/e2017-80311-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using two simple examples, the continuous-time random walk as well as a two state Markov chain, the relation between generalized anomalous relaxation equations and semi-Markov processes is illustrated. This relation is then used to discuss continuous-time random statistics in a general setting, for statistics of convolution-type. Two examples are presented in some detail: the sum statistic and the maximum statistic.
引用
收藏
页数:5
相关论文
共 31 条
[1]  
[Anonymous], ARXIV150602951MATHPR
[2]  
[Anonymous], 2009, Levy processes and stochastic calculus
[3]  
Baleanu D, 2016, Series on Complexity, Nonlinearity and Chaos
[4]   Recurrence of extreme events with power-law interarrival times [J].
Benson, David A. ;
Schumer, Rina ;
Meerschaert, Mark M. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (16)
[5]  
De Finetti B., 1975, Theory of Probability, VII
[6]   Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics [J].
de Oliveira, E. Capelas ;
Mainardi, F. ;
Vaz, J., Jr. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :161-171
[7]  
Feller W., 1966, INTRO PROBABILITY IT, V2
[8]   Solvable non-Markovian dynamic network [J].
Georgiou, Nicos ;
Kiss, Istvan Z. ;
Scalas, Enrico .
PHYSICAL REVIEW E, 2015, 92 (04)
[9]   Stochastic calculus for uncoupled continuous-time random walks [J].
Germano, Guido ;
Politi, Mauro ;
Scalas, Enrico ;
Schilling, Reneacute L. .
PHYSICAL REVIEW E, 2009, 79 (06)
[10]  
GLOCKLE WG, 1991, MACROMOLECULES, V24, P6426