Opportunities for Long-Range Magnon-Mediated Entanglement of Spin Qubits via On- and Off-Resonant Coupling

被引:73
作者
Fukami, Masaya [1 ]
Candido, Denis R. [2 ]
Awschalom, David D. [1 ,3 ,4 ]
Flatte, Michael E. [2 ,5 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[3] Argonne Natl Lab, Ctr Mol Engn, Lemont, IL USA
[4] Argonne Natl Lab, Mat Sci Div, Lemont, IL USA
[5] Eindhoven Univ Technol, Dept Appl Phys, Eindhoven, Netherlands
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
关键词
COHERENT DYNAMICS; BELL INEQUALITY; ELECTRON SPINS; SINGLE SPINS; QUANTUM; VIOLATION;
D O I
10.1103/PRXQuantum.2.040314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability to manipulate entanglement between multiple spatially separated qubits is essential for quantum-information processing. Although nitrogen-vacancy (NV) centers in diamond provide a promising qubit platform, developing scalable two-qubit gates remains a well-known challenge. To this end, magnon-mediated entanglement proposals have attracted attention due to their long-range spin-coherent propagation. Optimal device geometries and gate protocols of such schemes, however, have yet to be determined. Here we predict strong long-distance (mu m) NV-NV coupling via magnon modes with cooperativities exceeding unity in ferromagnetic bar and waveguide structures. Moreover, we explore and compare on-resonant transduction and off-resonant virtual-magnon exchange protocols, and discuss their suitability for generating or manipulating entangled states at low temperatures (T < 150 mK) under realistic experimental conditions. This work will guide future experiments that aim to entangle spin qubits in solids with magnon excitations.
引用
收藏
页数:34
相关论文
共 95 条
[1]   Long-range spin wave mediated control of defect qubits in nanodiamonds [J].
Andrich, Paolo ;
de las Casas, Charles F. ;
Liu, Xiaoying ;
Bretscher, Hope L. ;
Berman, Jonson R. ;
Heremans, F. Joseph ;
Nealey, Paul F. ;
Awschalom, David D. .
NPJ QUANTUM INFORMATION, 2017, 3
[2]   Violation of Bell's inequality in Josephson phase qubits [J].
Ansmann, Markus ;
Wang, H. ;
Bialczak, Radoslaw C. ;
Hofheinz, Max ;
Lucero, Erik ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Weides, M. ;
Wenner, J. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2009, 461 (7263) :504-506
[3]  
Awschalom D. D., 2021, ARXIV210203222
[4]   Quantum technologies with optically interfaced solid-state spins [J].
Awschalom, David D. ;
Hanson, Ronald ;
Wrachtrup, Joerg ;
Zhou, Brian B. .
NATURE PHOTONICS, 2018, 12 (09) :516-527
[5]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[6]   Entanglement estimation from Bell inequality violation [J].
Bartkiewicz, Karol ;
Horst, Bohdan ;
Lemr, Karel ;
Miranowicz, Adam .
PHYSICAL REVIEW A, 2013, 88 (05)
[7]  
Bartling H. P., 2021, ARXIV210307961
[8]   All-Optical Control of the Silicon-Vacancy Spin in Diamond at Millikelvin Temperatures [J].
Becker, Jonas N. ;
Pingault, Benjamin ;
Gross, David ;
Guendogan, Mustafa ;
Kukharchyk, Nadezhda ;
Markham, Matthew ;
Edmonds, Andrew ;
Atatuere, Mete ;
Bushev, Pavel ;
Becher, Christoph .
PHYSICAL REVIEW LETTERS, 2018, 120 (05)
[9]   Optimized cavity-mediated dispersive two-qubit gates between spin qubits [J].
Benito, M. ;
Petta, J. R. ;
Burkard, Guido .
PHYSICAL REVIEW B, 2019, 100 (08)
[10]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90