The effect of shear stress on protein conformation Physical forces operating on biochemical systems: The case of von Willebrand factor

被引:78
作者
Di Stasio, Enrico [1 ]
De Cristofaro, Raimondo [2 ]
机构
[1] Catholic Univ, Sch Med, Inst Biochem & Clin Biochem, I-00168 Rome, Italy
[2] Catholic Univ, Sch Med, Dept Internal Med & Med Specialties, Haemostasis Res Ctr, I-00168 Rome, Italy
关键词
Shear stress; von Willebrand factor; Blood haemostasis; Protein conformational changes; Vicinal cysteines disulfide bond; PLATELET GLYCOPROTEIN-IB; ALANINE SCANNING MUTAGENESIS; VIII-VONWILLEBRAND FACTOR; FACTOR A2 DOMAIN; A1; DOMAIN; SELF-ASSOCIATION; FACTOR MULTIMERS; FACTOR-BINDING; CELL-SURFACE; ADHESION;
D O I
10.1016/j.bpc.2010.07.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Macromolecules and cells exposed to blood flow in the circulatory tree experience hydrodynamic forces that affect their structure and function. After introducing the general theory of the effects of shear forces on protein conformation, selected examples are presented in this review for biological macromolecules sensitive to shear stress. In particular, the biochemical effects of shear stress in controlling the von Willebrand Factor (VWF) conformation are extensively described. This protein, together with blood platelets, is the main actor of the early steps of primary haemostasis. Under the effect of shear forces >30 dyn/cm(2), VWF unfolding occurs and the protein exhibits an extended chain conformation oriented in the general direction of the shear stress field. The stretched VWF conformation favors also a process of self aggregation, responsible for the formation of a spider web network, particularly efficient in the trapping process of flowing platelets. Thus, the effect of shear stress on conformational changes in VWF shows a close structure-function relationship in VWF for platelet adhesion and thrombus formation in arterial circulation, where high shear stress is present. The investigation of biophysical effects of shear forces on VWF conformation contributes to unraveling the molecular interaction mechanisms involved in arterial thrombosis. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 74 条
[1]  
[Anonymous], 1980, BIOPHYS CHEM
[2]   KINETICS OF FLOWING DISPERSIONS .8. DOUBLETS OF RIGID SPHERES (THEORETICAL) [J].
ARP, PA ;
MASON, SG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1977, 61 (01) :21-43
[3]   Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex:: studies using optical tweezers [J].
Arya, M ;
Anvari, B ;
Romo, GM ;
Cruz, MA ;
Dong, JF ;
McIntire, LV ;
Moake, JL ;
López, JA .
BLOOD, 2002, 99 (11) :3971-3977
[4]   Shear-Induced Unfolding of Lysozyme Monitored In Situ [J].
Ashton, Lorna ;
Dusting, Jonathan ;
Imomoh, Eboshogwe ;
Balabani, Stavroula ;
Blanch, Ewan W. .
BIOPHYSICAL JOURNAL, 2009, 96 (10) :4231-4236
[5]   Conformational stability and domain unfolding of the Von Willebrand factor A domains [J].
Auton, Matthew ;
Cruz, Miguel A. ;
Moake, Joel .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 366 (03) :986-1000
[6]   Soluble plasma-derived von Willebrand factor assembles to a halemostatically active filamentous network [J].
Barg, Alexej ;
Ossig, Rainer ;
Goerge, Tobias ;
Schneider, Matthias F. ;
Schillers, Hermann ;
Oberleithner, Hans ;
Schneider, Stefan W. .
THROMBOSIS AND HAEMOSTASIS, 2007, 97 (04) :514-526
[7]   HELIX GEOMETRY IN PROTEINS [J].
BARLOW, DJ ;
THORNTON, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 201 (03) :601-619
[8]   Response of a Concentrated Monoclonal Antibody Formulation to High Shear [J].
Bee, Jared S. ;
Stevenson, Jennifer L. ;
Mehta, Bhavya ;
Svitel, Juraj ;
Pollastrini, Joey ;
Platz, Robert ;
Freund, Erwin ;
Carpenter, John F. ;
Randolph, Theodore W. .
BIOTECHNOLOGY AND BIOENGINEERING, 2009, 103 (05) :936-943
[9]   Factors Influencing Antibody Stability at Solid-Liquid Interfaces in a High Shear Environment [J].
Biddlecombe, James G. ;
Smith, Graeme ;
Uddin, Shahid ;
Mulot, Sandrine ;
Spencer, David ;
Gee, Chris ;
Fish, Brendan C. ;
Bracewell, Daniel G. .
BIOTECHNOLOGY PROGRESS, 2009, 25 (05) :1499-1507
[10]  
Bird R. B., 2005, TRANSPORT PHENOMENA