Some global synchronization criteria for coupled delay-systems via unidirectional linear error feedback approach

被引:27
作者
Sun, JT [1 ]
机构
[1] Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China
关键词
D O I
10.1016/S0960-0779(03)00207-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper proposes some simple generic criteria of global synchronization between two coupled delay-systems from a unidirectional linear error feedback coupling approach. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:789 / 794
页数:6
相关论文
共 28 条
[1]   On the synchronization of a class of electronic circuits that exhibit chaos [J].
Bai, EW ;
Lonngren, KE ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2002, 13 (07) :1515-1521
[2]   Antiphase synchronization of chaos by noncontinuous coupling: two impacting oscillators [J].
Blazejczyk-Okolewska, B ;
Brindley, J ;
Czolczynski, K ;
Kapitaniak, T .
CHAOS SOLITONS & FRACTALS, 2001, 12 (10) :1823-1826
[3]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[4]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[5]  
Chen G., 1998, CHAOS ORDER METHODOL
[6]   Absolute stability theory and master-slave synchronization [J].
Curran, PF ;
Suykens, JAK ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12) :2891-2896
[7]   Synchronizing high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks [J].
Grassi, G ;
Mascolo, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (04) :705-711
[8]   Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal [J].
Grassi, G ;
Mascolo, S .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10) :1011-1014
[9]  
JESUS LR, 2000, AUTOMATICA, V35, P613
[10]   A simple global synchronization criterion for coupled chaotic systems [J].
Jiang, GP ;
Tang, WKS ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2003, 15 (05) :925-935