Synchronization control for chaotic systems based on adaptive method

被引:0
作者
Wu Qing-qing [1 ]
Li Tao [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Informat & Control, Nanjing 210044, Jiangsu, Peoples R China
来源
2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC) | 2015年
关键词
chaotic system; adaptive; synchronization control; FUNCTION PROJECTIVE SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two kinds of synchronization control are proposed for chaotic systems with constant Lyapunov spectrum based on adaptive method. The first method can realize complete synchronization, anti-synchronization, projective synchronization and hybrid synchronization control, respectively. This method may be prove the validity by using the Lyapunov stability theory. The second method is adopted to design a special hybrid controller to achieve anti-synchronization, which includes two parts, which are pre-controller and feedback controller. The main characteristic of the second scheme doesn't need to rely on the Ross-Hurwitz criterion and be suitable for the synchronization of high dimension chaotic system. Finally, numerical simulation is given to show the effectiveness of the proposed method.
引用
收藏
页码:3010 / 3015
页数:6
相关论文
共 11 条
[1]  
CAROLL TL, 1991, IEEE T CIRCUITS SYST, V38, P453
[2]   Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme [J].
Chen, Diyi ;
Zhang, Runfan ;
Ma, Xiaoyi ;
Liu, Si .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :35-55
[3]   Hybrid phase synchronization between identical and nonidentical three-dimensional chaotic systems using the active control method [J].
Das, S. ;
Srivastava, M. ;
Leung, A. Y. T. .
NONLINEAR DYNAMICS, 2013, 73 (04) :2261-2272
[4]   Modified projective synchronization of chaotic dissipative gyroscope systems via backstepping control [J].
Farivar, F. ;
Nekoui, M. A. ;
Shoorehdeli, M. A. ;
Teshnehlab, M. .
INDIAN JOURNAL OF PHYSICS, 2012, 86 (10) :901-906
[5]   Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems [J].
Hu, Jianbing ;
Han, Yan ;
Zhao, Lingdong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (01) :115-123
[6]  
Peeora L M, 1990, PHYS REV LEFT, V64, P821
[7]   Adaptive modified function projective synchronization and parameter identification of uncertain hyperchaotic (chaotic) systems with identical or non-identical structures [J].
Sun, Zhiyong ;
Si, Gangquan ;
Min, Fuhong ;
Zhang, Yanbin .
NONLINEAR DYNAMICS, 2012, 68 (04) :471-486
[8]   Anti-synchronization of four-wing chaotic systems via sliding mode control [J].
Vaidyanathan S. ;
Sampath S. .
International Journal of Automation and Computing, 2012, 9 (03) :274-279
[9]   Adaptive generalized function projective synchronization of uncertain chaotic complex systems [J].
Wu, Xiangjun ;
Wang, Jinke .
NONLINEAR DYNAMICS, 2013, 73 (03) :1455-1467
[10]   Dynamics analysis and hybrid function projective synchronization of a new chaotic system [J].
Wu, Xiangjun ;
Li, Shanzhi .
NONLINEAR DYNAMICS, 2012, 69 (04) :1979-1994