Complete classification of (δ plus αu2)-constacyclic codes over F2m[u]/⟨u4⟩ of oddly even length

被引:8
作者
Cao, Yuan [1 ]
Cao, Yonglin [1 ]
Ma, Fanghui [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Constacyclic code; Linear code; Finite chain ring; Additive code; SELF-DUAL CODES; CYCLIC CODES; CONSTACYCLIC CODES; RINGS;
D O I
10.1016/j.disc.2017.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-2m be a finite field of cardinality 2(m), R = F-2m[u]/< u(4)> and n be an odd positive integer. For any delta, alpha is an element of F-2m(x) ideals of the ring R[x]/< x(2n) - (delta + alpha u(2))> are identified as (delta+alpha u(2))-constacyclic codes of length 2n overR. In this paper, an explicit representation and enumeration for all distinct (delta + alpha u(2))-constacyclic codes of length 2n over R are presented. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2840 / 2852
页数:13
相关论文
共 22 条
[1]   Cyclic codes over the rings Z2+uZ2 and Z2+uZ2+u2Z2 [J].
Abualrub, Taher ;
Siap, Irfan .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 42 (03) :273-287
[2]   Constacyclic codes over F2 + uF2 [J].
Abualrub, Taher ;
Siap, Irfan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (05) :520-529
[3]   Cyclic codes over Z2 + uZ2 + u2Z2 + ... + uk-1Z2 [J].
Al-Ashker, Mohammed ;
Hamoudeh, Mohammed .
TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (04) :737-749
[4]   On (1-u)-cyclic codes over Fpk + uFpk [J].
Amarra, Maria Carmen V. ;
Nemenzo, Fidel R. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (11) :1129-1133
[5]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[6]  
Cao Y., APPL ALGEBRA ENG COM
[7]  
Cao YL, 2016, APPL ALGEBR ENG COMM, V27, P259, DOI 10.1007/s00200-015-0281-4
[8]   Repeated root cyclic Fq-linear codes over Fql [J].
Cao, Yonglin ;
Gao, Yun .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 31 :202-227
[9]   On constacyclic codes over finite chain rings [J].
Cao, Yonglin .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :124-135
[10]   Constacyclic codes of length ps over Fpm + uFpm [J].
Dinh, Hai Q. .
JOURNAL OF ALGEBRA, 2010, 324 (05) :940-950