Existence of solutions for Sturm-Liouville boundary value problems of higher-order coupled fractional differential equations at resonance

被引:4
作者
Xue, Tingting [1 ,2 ]
Liu, Wenbin [1 ]
Zhang, Wei [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Peoples R China
[2] Xinjiang Inst Engn, Dept Basic, Urumqi 830000, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional differential system; Sturm-Liouville boundary value conditions; resonance; Mawhin continuation theorem; NUMERICAL-SOLUTION; POSITIVE SOLUTIONS; SOLVABILITY;
D O I
10.1186/s13662-017-1345-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the existence of solutions for a higher-order coupled system of fractional differential equations with Sturm-Liouville boundary value conditions at resonance. By applying Mawhin continuation theorem, some new existence results are established. Furthermore, two examples are supplied to demonstrate the main results.
引用
收藏
页数:18
相关论文
共 41 条
[1]   Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions [J].
Agarwal, Ravi P. ;
Ahmad, Bashir .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1200-1214
[2]   Some new versions of fractional boundary value problems with slit-strips conditions [J].
Ahmad, Bashir ;
Agarwal, Ravi P. .
BOUNDARY VALUE PROBLEMS, 2014, :1-12
[3]   On the numerical solution of fractional Sturm-Liouville problems [J].
Al-Mdallal, Qasem M. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (12) :2837-2845
[4]  
[Anonymous], 2006, THEORY APPL FRACTION
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]   Solvability of fractional three-point boundary value problems with nonlinear growth [J].
Bai, Zhanbing ;
Zhang, Yinghan .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :1719-1725
[7]   Solvability for a class of fractional m-point boundary value problem at resonance [J].
Bai, Zhanbing .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1292-1302
[8]  
Bashir A, 2010, FIXED POINT THEORY A, V2010
[9]   Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives [J].
Chen, Yong ;
An, Hong-Li .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) :87-95
[10]   Chaos synchronization of the fractional Lu system [J].
Deng, WH ;
Li, CP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) :61-72