Enhanced ionic conductivity of yttria-stabilized ZrO2 with natural CuFe-oxide mineral heterogeneous composite for low temperature solid oxide fuel cells

被引:42
作者
Xu, Rong [1 ]
Wu, Yan [1 ]
Wang, Xunying [2 ]
Zhang, Jing [1 ]
Yang, Xiang [1 ]
Zhu, Bin [2 ,3 ]
机构
[1] China Univ Geosci Wuhan, Fac Mat Sci & Chem, Wuhan, Hubei, Peoples R China
[2] Hubei Univ, Fac Phys & Elect Sci, Hubei Collaborat Innovat Ctr Adv Organ Mat, Wuhan, Hubei, Peoples R China
[3] Royal Inst Technol, Dept Energy Technol, Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
CuFe-oxide mineral; Yttria-stabilized ZrO2; Heterogeneous composite electrolyte; Low temperature solid oxide fuel cells; ELECTRICAL-PROPERTIES; OXYGEN REDUCTION; ELECTROLYTE; PERFORMANCE; HEMATITE; CERIA; FABRICATION; CONDUCTORS; LAYER;
D O I
10.1016/j.ijhydene.2017.05.218
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report for the first time that the commercial yttrium stabilized zirconia (YSZ) nano composite with a natural CuFe-oxide mineral (CF) exhibits a greatly enhanced ionic conductivity in the low temperature range (500-600 degrees C), e.g. 0.48 S/cm at 550 degrees C. The CF YSZ composite was prepared via a nanocomposite approach. Fuel cells were fabricated by using a CF YSZ electrolyte layer between the symmetric electrodes of the Ni0.8Co0.2Al0.5Li (NCAL) coated Ni foam. The maximum power output of 562 mW/cm(2) has been achieved at 550 degrees C. Even the CF alone to replace the electrolyte the device reached the maximum power of 281 mW/cm(2) at the same temperature. Different ion-conduction mechanisms for YSZ and CF YSZ are proposed. This work provides a new approach to develop natural mineral composites for advanced low temperature solid oxide fuel cells with a great marketability. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17495 / 17503
页数:9
相关论文
共 44 条
[1]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[2]   Break down of losses in thin electrolyte SOFCs [J].
Barfod, R ;
Hagen, A ;
Ramousse, S ;
Hendriksen, PV ;
Mogensen, M .
FUEL CELLS, 2006, 6 (02) :141-145
[3]   Template engaged synthesis of hollow ceria-based composites [J].
Chen, Guozhu ;
Rosei, Federico ;
Ma, Dongling .
NANOSCALE, 2015, 7 (13) :5578-5591
[4]   All in One Multifunctional Perovskite Material for Next Generation SOFC [J].
Dong, Wenjing ;
Yaqub, Azra ;
Janjua, Naveed K. ;
Raza, Rizwan ;
Afzal, Muhammad ;
Zhu, Bin .
ELECTROCHIMICA ACTA, 2016, 193 :225-230
[5]   Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-δ [J].
Dong, Xiao ;
Tian, Li ;
Li, Jiang ;
Zhao, Yicheng ;
Tian, Ye ;
Li, Yongdan .
JOURNAL OF POWER SOURCES, 2014, 249 :270-276
[6]   Magnetically separable photocatalyst of direct Z-scheme g-C3N4 nanosheets/natural hematite ore hybrids [J].
Dong, Zhifang ;
Wu, Yan .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2017, 336 :156-163
[7]   SOME NEW COMPOUNDS WITH DELAFOSSITE STRUCTURE [J].
DOUMERC, JP ;
AMMAR, A ;
WICHAINCHAI, A ;
POUCHARD, M ;
HAGENMULLER, P .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1987, 48 (01) :37-43
[8]   Readily processed protonic ceramic fuel cells with high performance at low temperatures [J].
Duan, Chuancheng ;
Tong, Jianhua ;
Shang, Meng ;
Nikodemski, Stefan ;
Sanders, Michael ;
Ricote, Sandrine ;
Almansoori, Ali ;
O'Hayre, Ryan .
SCIENCE, 2015, 349 (6254) :1321-1326
[9]   Optimisation of composite cathodes for intermediate temperature SOFC applications [J].
Dusastre, V ;
Kilner, JA .
SOLID STATE IONICS, 1999, 126 (1-2) :163-174
[10]   Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells [J].
Fan, Liangdong ;
Zhang, Hongjuan ;
Chen, Mingming ;
Wang, Chengyang ;
Wang, Hao ;
Singh, Manish ;
Zhu, Bin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (26) :11398-11405