Joint modeling of multivariate nonparametric longitudinal data and survival data: A local smoothing approach

被引:6
|
作者
You, Lu [1 ]
Qiu, Peihua [2 ]
机构
[1] Univ S Florida, Hlth Informat Inst, 3650 Spectrum Blvd, Tampa, FL 33612 USA
[2] Univ Florida, Dept Biostat, Tampa, FL USA
基金
美国国家科学基金会;
关键词
joint modeling; local kernel smoothing; longitudinal data; multiple outcomes; nonparametric mixed-effects model; survival data; LINEAR MIXED MODELS; SELECTION; REGRESSION; LIKELIHOOD; EM; LASSO;
D O I
10.1002/sim.9206
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many clinical studies, evaluating the association between longitudinal and survival outcomes is of primary concern. For analyzing data from such studies, joint modeling of longitudinal and survival data becomes an appealing approach. In some applications, there are multiple longitudinal outcomes whose longitudinal pattern is difficult to describe by a parametric form. For such applications, existing research on joint modeling is limited. In this article, we develop a novel joint modeling method to fill the gap. In the new method, a local polynomial mixed-effects model is used for describing the nonparametric longitudinal pattern of the multiple longitudinal outcomes. Two model estimation procedures, that is, the local EM algorithm and the local penalized quasi-likelihood estimation, are explored. Practical guidelines for choosing tuning parameters and for variable selection are provided. The new method is justified by some theoretical arguments and numerical studies.
引用
收藏
页码:6689 / 6706
页数:18
相关论文
共 50 条
  • [21] Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach
    Baghfalaki, T.
    Ganjali, M.
    Berridge, D.
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (09) : 1934 - 1955
  • [22] Backward joint model and dynamic prediction of survival with multivariate longitudinal data
    Shen, Fan
    Li, Liang
    STATISTICS IN MEDICINE, 2021, 40 (20) : 4395 - 4409
  • [23] Nonparametric smoothing estimates of a nonlinear mixed model with longitudinal data
    Liu, J
    Xiang, J
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE BIOPHARMACEUTICAL SECTION, 1996, : 267 - 269
  • [24] Joint modeling of longitudinal and survival data via a common frailty
    Ratcliffe, SJ
    Guo, WS
    Ten Have, TR
    BIOMETRICS, 2004, 60 (04) : 892 - 899
  • [25] Bayesian joint modeling of longitudinal and spatial survival AIDS data
    Martins, Rui
    Silva, Giovani L.
    Andreozzi, Valeska
    STATISTICS IN MEDICINE, 2016, 35 (19) : 3368 - 3384
  • [26] Joint modeling of quantitative longitudinal data and censored survival time
    Jacqmin-Gadda, H
    Thiébaut, R
    Dartigues, JF
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2004, 52 (06): : 502 - 510
  • [27] A SEMIPARAMETRIC BAYESIAN APPROACH TO MULTIVARIATE LONGITUDINAL DATA
    Ghosh, Pulak
    Hanson, Timothy
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2010, 52 (03) : 275 - 288
  • [28] A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time
    Luo, Sheng
    STATISTICS IN MEDICINE, 2014, 33 (04) : 580 - 594
  • [29] Harmonizing Longitudinal and Survival Data Using a Joint-Modeling Framework: An Efficient Approach to Assessing Social Interventions
    Chen, Ding-Geng
    Ansong, David
    Brevard, Kanisha C.
    Okumu, Moses
    Bo, Ai
    JOURNAL OF THE SOCIETY FOR SOCIAL WORK AND RESEARCH, 2021, 12 (01) : 247 - 262
  • [30] Consistent estimation of a joint model for multivariate longitudinal and survival data with latent variables
    Kang, Kai
    Song, Xinyuan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 187