Joint modeling of multivariate nonparametric longitudinal data and survival data: A local smoothing approach

被引:6
|
作者
You, Lu [1 ]
Qiu, Peihua [2 ]
机构
[1] Univ S Florida, Hlth Informat Inst, 3650 Spectrum Blvd, Tampa, FL 33612 USA
[2] Univ Florida, Dept Biostat, Tampa, FL USA
基金
美国国家科学基金会;
关键词
joint modeling; local kernel smoothing; longitudinal data; multiple outcomes; nonparametric mixed-effects model; survival data; LINEAR MIXED MODELS; SELECTION; REGRESSION; LIKELIHOOD; EM; LASSO;
D O I
10.1002/sim.9206
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many clinical studies, evaluating the association between longitudinal and survival outcomes is of primary concern. For analyzing data from such studies, joint modeling of longitudinal and survival data becomes an appealing approach. In some applications, there are multiple longitudinal outcomes whose longitudinal pattern is difficult to describe by a parametric form. For such applications, existing research on joint modeling is limited. In this article, we develop a novel joint modeling method to fill the gap. In the new method, a local polynomial mixed-effects model is used for describing the nonparametric longitudinal pattern of the multiple longitudinal outcomes. Two model estimation procedures, that is, the local EM algorithm and the local penalized quasi-likelihood estimation, are explored. Practical guidelines for choosing tuning parameters and for variable selection are provided. The new method is justified by some theoretical arguments and numerical studies.
引用
收藏
页码:6689 / 6706
页数:18
相关论文
共 50 条