Joint modeling of multivariate nonparametric longitudinal data and survival data: A local smoothing approach

被引:6
|
作者
You, Lu [1 ]
Qiu, Peihua [2 ]
机构
[1] Univ S Florida, Hlth Informat Inst, 3650 Spectrum Blvd, Tampa, FL 33612 USA
[2] Univ Florida, Dept Biostat, Tampa, FL USA
基金
美国国家科学基金会;
关键词
joint modeling; local kernel smoothing; longitudinal data; multiple outcomes; nonparametric mixed-effects model; survival data; LINEAR MIXED MODELS; SELECTION; REGRESSION; LIKELIHOOD; EM; LASSO;
D O I
10.1002/sim.9206
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many clinical studies, evaluating the association between longitudinal and survival outcomes is of primary concern. For analyzing data from such studies, joint modeling of longitudinal and survival data becomes an appealing approach. In some applications, there are multiple longitudinal outcomes whose longitudinal pattern is difficult to describe by a parametric form. For such applications, existing research on joint modeling is limited. In this article, we develop a novel joint modeling method to fill the gap. In the new method, a local polynomial mixed-effects model is used for describing the nonparametric longitudinal pattern of the multiple longitudinal outcomes. Two model estimation procedures, that is, the local EM algorithm and the local penalized quasi-likelihood estimation, are explored. Practical guidelines for choosing tuning parameters and for variable selection are provided. The new method is justified by some theoretical arguments and numerical studies.
引用
收藏
页码:6689 / 6706
页数:18
相关论文
共 50 条
  • [1] JOINT MODELING OF MULTISTATE AND NONPARAMETRIC MULTIVARIATE LONGITUDINAL DATA
    You, Lu
    Salami, Falastin
    Torn, Carina
    Lernmark, Ake
    Tamura, Roy
    ANNALS OF APPLIED STATISTICS, 2024, 18 (03) : 2444 - 2461
  • [2] Joint modeling of longitudinal and survival data
    Crowther, Michael J.
    Abrams, Keith R.
    Lambert, Paul C.
    STATA JOURNAL, 2013, 13 (01) : 165 - 184
  • [3] An efficient estimation approach to joint modeling of longitudinal and survival data
    Krahn, Jody
    Hossain, Shakhawat
    Khan, Shahedul
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (15) : 3031 - 3047
  • [4] Joint models for multivariate longitudinal and multivariate survival data
    Chi, Yueh-Yun
    Ibrahim, Joseph G.
    BIOMETRICS, 2006, 62 (02) : 432 - 445
  • [5] A joint modeling approach for multivariate survival data with random length
    Liu, Shuling
    Manatunga, Amita K.
    Peng, Limin
    Marcus, Michele
    BIOMETRICS, 2017, 73 (02) : 666 - 677
  • [6] Semiparametric Bayesian joint models of multivariate longitudinal and survival data
    Tang, Nian-Sheng
    Tang, An-Min
    Pan, Dong-Dong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 113 - 129
  • [7] Joint modeling of survival and longitudinal data: Likelihood approach revisited
    Hsieh, Fushing
    Tseng, Yi-Kuan
    Wang, Jane-Ling
    BIOMETRICS, 2006, 62 (04) : 1037 - 1043
  • [8] JOINT MIXED MEMBERSHIP MODELING OF MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA FOR LEARNING THE INDIVIDUALIZED DISEASE PROGRESSION
    He, Yuyang
    Song, Xinyuan
    Kang, Kai
    ANNALS OF APPLIED STATISTICS, 2024, 18 (03) : 1924 - 1946
  • [9] Variable selection for joint models of multivariate skew-normal longitudinal and survival data
    Tang, Jiarui
    Tang, An-Min
    Tang, Niansheng
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (09) : 1694 - 1710
  • [10] Bayesian Joint Modeling Analysis of Longitudinal Proportional and Survival Data
    Liu, Wenting
    Li, Huiqiong
    Tang, Anmin
    Cui, Zixin
    MATHEMATICS, 2023, 11 (16)