Ray's theorem revisited: a fixed point free firmly nonexpansive mapping in Hilbert spaces

被引:0
作者
Kohsaka, Fumiaki [1 ]
机构
[1] Oita Univ, Dept Comp Sci & Intelligent Syst, Oita, Oita 8701192, Japan
基金
日本学术振兴会;
关键词
firmly nonexpansive mapping; fixed point; Hilbert space; Ray's theorem; unbounded set; BANACH-SPACES; UNBOUNDED SETS; PROPERTY;
D O I
10.1186/s13660-015-0606-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give another proof of a strong version of Ray's theorem ensuring that every unbounded closed convex subset of a Hilbert space admits a fixed point free firmly nonexpansive mapping.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 12 条
[1]  
[Anonymous], 2000, Nonlinear Functional Analysis
[2]  
Aoyama K, 2010, J NONLINEAR CONVEX A, V11, P335
[3]  
Brezis H., 2011, Functional analysis, DOI DOI 10.1007/978-0-387-70914-7
[5]   CONVERGENCE THEOREMS FOR SEQUENCES OF NONLINEAR OPERATORS IN BANACH SPACES [J].
BROWDER, FE .
MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) :201-&
[6]   NONEXPANSIVE PROJECTIONS ON SUBSETS OF BANACH SPACES [J].
BRUCK, RE .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 47 (02) :341-355
[7]  
Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
[8]  
Goebel K., 1990, Topics in Metric Fixed Point Theory
[9]  
Kohsaka F, 2011, ADV INTEL SOFT COMPU, V100, P403