Optimum segmentation and windowing in nonparametric power spectral density estimation

被引:0
|
作者
Beheshti, Soosan [1 ]
Pal, Sudeshna [1 ]
机构
[1] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON, Canada
关键词
autocorrelation; periodogram; spectral analysis; estimation;
D O I
10.1109/ICDSP.2007.4288598
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In averaging power spectral density (PSD) estimation methods, such as Bartlett and Welch approaches, segmented version of data is used. However. no systematic method for the choice of optimum segmentation is available. In this paper, we provide a novel approach to nonparametric PSD estimation that not only provides the optimum segmentation in these approaches, but also combines these approaches with a new optimum windowing within the segments. The desired criterion in this method is PSD mean square error that is estimated for windows and segments of different length. The new optimum windowing approach outperforms the existing nonparametric approaches.
引用
收藏
页码:379 / +
页数:2
相关论文
共 50 条
  • [21] Nonparametric Spectral Estimation - An overview
    Angelopoulos, Konstantinos
    Glentis, George Othon
    25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 118 - 123
  • [22] Spline Windows for Power Spectral Density Estimation
    Stanciu, Lucian
    Stanciu, Cristian
    2011 10TH INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2011,
  • [23] Butterworth Window for Power Spectral Density Estimation
    Yoon, Tae Hyun
    Joo, Eon Kyeong
    ETRI JOURNAL, 2009, 31 (03) : 292 - 297
  • [24] ON ANALOGUE METHODS FOR POWER SPECTRAL DENSITY ESTIMATION
    DIPILLO, G
    KOCH, G
    MARANO, R
    INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (05) : 759 - &
  • [26] BAYESIAN NONPARAMETRIC ESTIMATION OF THE SPECTRAL DENSITY OF A LONG OR INTERMEDIATE MEMORY GAUSSIAN PROCESS
    Rousseau, Judith
    Chopin, Nicolas
    Liseo, Brunero
    ANNALS OF STATISTICS, 2012, 40 (02): : 964 - 995
  • [27] ASYMPTOTICALLY EFFICIENT NONPARAMETRIC-ESTIMATION OF FUNCTIONALS OF A SPECTRAL DENSITY-FUNCTION
    HASMINSKII, RZ
    IBRAGIMOV, IA
    PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (03) : 447 - 461
  • [28] Bayesian nonparametric spectral density estimation using B-spline priors
    Matthew C. Edwards
    Renate Meyer
    Nelson Christensen
    Statistics and Computing, 2019, 29 : 67 - 78
  • [29] Bayesian nonparametric spectral density estimation using B-spline priors
    Edwards, Matthew C.
    Meyer, Renate
    Christensen, Nelson
    STATISTICS AND COMPUTING, 2019, 29 (01) : 67 - 78
  • [30] Nonparametric density and regression estimation
    DiNardo, J
    Tobias, JL
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 11 - 28