Optimum segmentation and windowing in nonparametric power spectral density estimation

被引:0
|
作者
Beheshti, Soosan [1 ]
Pal, Sudeshna [1 ]
机构
[1] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON, Canada
关键词
autocorrelation; periodogram; spectral analysis; estimation;
D O I
10.1109/ICDSP.2007.4288598
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In averaging power spectral density (PSD) estimation methods, such as Bartlett and Welch approaches, segmented version of data is used. However. no systematic method for the choice of optimum segmentation is available. In this paper, we provide a novel approach to nonparametric PSD estimation that not only provides the optimum segmentation in these approaches, but also combines these approaches with a new optimum windowing within the segments. The desired criterion in this method is PSD mean square error that is estimated for windows and segments of different length. The new optimum windowing approach outperforms the existing nonparametric approaches.
引用
收藏
页码:379 / +
页数:2
相关论文
共 50 条
  • [1] Adaptive windowing in nonparametric power spectral density estimation
    Beheshti, Soosan
    Ravan, Maryam
    2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, : 1130 - +
  • [2] NONPARAMETRIC SPECTRAL DENSITY ESTIMATION WITH MISSING OBSERVATIONS
    Lee, Thomas C. M.
    Zhu, Zhengyuan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3041 - +
  • [3] Missing not at random and the nonparametric estimation of the spectral density
    Efromovich, Sam
    JOURNAL OF TIME SERIES ANALYSIS, 2020, 41 (05) : 652 - 675
  • [4] Nonparametric density gradient estimation for segmentation of cerebral MRI
    Jiménez, JR
    Medina, V
    Yánez, O
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 1076 - 1077
  • [5] Nonparametric spectral density estimation under local differential privacy
    Kroll, Martin
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2024, 27 (03) : 725 - 759
  • [6] On nonparametric spectral estimation
    Stoica, P
    Sundin, T
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1999, 18 (02) : 169 - 181
  • [7] On nonparametric spectral estimation
    Petre Stoica
    Tomas Sundin
    Circuits, Systems and Signal Processing, 1999, 18 : 169 - 181
  • [8] Epileptic EEG signal classification using optimum allocation based power spectral density estimation
    Al Ghayab, Hadi Ratham
    Li, Yan
    Siuly, Siuly
    Abdulla, Shahab
    IET SIGNAL PROCESSING, 2018, 12 (06) : 738 - 747
  • [9] COMPRESSIVE POWER SPECTRAL DENSITY ESTIMATION
    Lexa, Michael A.
    Davies, Mike E.
    Thompson, John S.
    Nikolic, Janosch
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3884 - 3887
  • [10] On the estimation of the evolutionary power spectral density
    Hong, H. P.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 190