Because of the complexities involved in measuring and modeling the performance and properties of finished fuels, the fuel science community must often use surrogate mixtures as substitutes, especially in the absence of consensus standard mixtures. While surrogate mixtures are often formulated on the basis of the ability of a particular mixture to reproduce a particular property, there is usually a desire to employ surrogate mixtures that are physicochemically authentic. This means that, provided that the primary purpose is satisfied, researchers are inclined to choose mixtures that have physical and chemical properties appropriate to the finished fuel. In this paper, we apply the advanced distillation curve method as a means to evaluate the physicochemical authenticity of surrogate mixtures. While the strategy outlined here can be used for any family of surrogates, we apply it to surrogate mixtures for Jet-A/JP-8. Mixtures were divided into two groups: (1) simple surrogate mixtures with up to three components and (2) complex surrogate mixtures with more than three components. We found that the modified Aachen surrogate (among the simple fluids) and the Schultz surrogate (among the complex fluids) had the best physicochemical authenticity.