Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys

被引:29
作者
Acar, E. [1 ,2 ]
Tobe, H. [1 ]
Kaya, I. [1 ,3 ]
Karaca, H. E. [1 ]
Chumlyakov, Y. I. [4 ]
机构
[1] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA
[2] Erciyes Univ, TR-38039 Kayseri, Turkey
[3] Anadolu Univ, Fac Engn, Dept Mech Engn, TR-26555 Eskisehir, Turkey
[4] Tomsk State Univ, Siberian Phys Tech Inst, Tomsk 634050, Russia
关键词
SINGLE-CRYSTALS; HYSTERESIS; BEHAVIOR; MICROSTRUCTURE; STRENGTH;
D O I
10.1007/s10853-014-8757-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The shape-memory properties of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys were determined through superelasticity and shape-memory tests in compression. It has been revealed that the Ni45.3Ti34.7Hf15Pd5 has a maximum transformation strain of 3.8 % and work output of up to 30 J cm(-3), while the Ni45.3Ti29.7Hf20Pd5 has a maximum transformation strain of 2.6 % and work output of up to 20 J cm(-3) at 700 MPa. Two-way shape-memory strains of 0.6 and 0.85 % were obtained in Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 alloys, respectively. The Ni45.3Ti34.7Hf15Pd5 showed superelasticity at 90 A degrees C with recoverable strain of 3.1 %, while high hardening of Ni45.3Ti29.7Hf20Pd5 limited its superelastic behavior. Microstructure of the Ni45.3Ti34.7Hf15Pd5 alloy was revealed by transmission electron microscopy, and effects of composition on the lattice parameters of the transforming phases and martensite morphology were discussed.
引用
收藏
页码:1924 / 1934
页数:11
相关论文
共 49 条
[1]   Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy [J].
Acar, E. ;
Karaca, H. E. ;
Tobe, H. ;
Noebe, R. D. ;
Chumlyakov, Y. I. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 578 :297-302
[2]   Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals [J].
Acar, E. ;
Karaca, H. E. ;
Basaran, B. ;
Yang, F. ;
Mills, M. J. ;
Noebe, R. D. ;
Chumlyakov, Y. I. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 573 :161-165
[3]  
[Anonymous], ENG ANAL SMART MAT S
[4]   Role of B19′ martensite deformation in stabilizing two-way shape memory behavior in NiTi [J].
Benafan, O. ;
Padula, S. A., II ;
Noebe, R. D. ;
Sisneros, T. A. ;
Vaidyanathan, R. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (09)
[5]   Crystal symmetry and the reversibility of martensitic transformations [J].
Bhattacharya, K ;
Conti, S ;
Zanzotto, G ;
Zimmer, J .
NATURE, 2004, 428 (6978) :55-59
[6]   COMPARISON OF THE GEOMETRICALLY NONLINEAR AND LINEAR THEORIES OF MARTENSITIC-TRANSFORMATION [J].
BHATTACHARYA, K .
CONTINUUM MECHANICS AND THERMODYNAMICS, 1993, 5 (03) :205-242
[7]   Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy [J].
Bigelow, G. S. ;
Garg, A. ;
Padula, S. A., II ;
Gaydosh, D. J. ;
Noebe, R. D. .
SCRIPTA MATERIALIA, 2011, 64 (08) :725-728
[8]   Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling [J].
Bigelow, Glen S. ;
Padula, Santo A., II ;
Garg, Anita ;
Gaydosh, Darrell ;
Noebe, Ronald D. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (12) :3065-3079
[9]   Materials for vibration damping [J].
Chung, DDL .
JOURNAL OF MATERIALS SCIENCE, 2001, 36 (24) :5733-5737
[10]   TRAINING AND 2 WAY MEMORY EFFECT IN CU-ZN-AL ALLOY [J].
CONTARDO, L ;
GUENIN, G .
ACTA METALLURGICA ET MATERIALIA, 1990, 38 (07) :1267-1272