Genome-wide analysis of the PHB gene family in Glycine max (L.) Merr.

被引:3
|
作者
Song, Min [1 ]
Peng, Xiangyong [1 ]
Du, Caifu [2 ]
Lei, Lei [2 ]
Zhang, Tao [2 ]
Xiang, Yang [2 ]
机构
[1] Qufu Normal Univ, Coll Life Sci, Qufu 273165, Peoples R China
[2] Guizhou Acad Agr Sci, Guizhou Rapeseed Inst, Guiyang 550008, Guizhou, Peoples R China
关键词
Glycine max (L.) Merr; Prohibitin domain; Gene family; Microsynteny; Expression pattern; IN-SILICO ANALYSIS; ARABIDOPSIS-THALIANA; CELL-PROLIFERATION; SPFH DOMAIN; PROHIBITIN; PROTEIN; EXPRESSION; STOMATINS; INFECTION; EVOLUTION;
D O I
10.1007/s13258-017-0580-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prohibitins (PHBs) have one SPFH domain in common and present in species ranging from prokaryotes to eukaryotes. Although a number of researches on PHBs were performed in different plant species, a systematic analysis of the PHB family in soybean is still remains uncharacterized. In the present study, 24 putative PHB genes have been first systemically identified in soybean. According to phylogenetic analysis, these GmPHBs could be classified into four groups. Gene structures and motif patterns showed high levels of conservation within the phylogenetic subgroups. Several members of this family have undergone purifying selection based on Ka/Ks analysis on duplicated PHB genes in soybean. We performed microsynteny analysis across four legume species based on the comparisons among the specific regions contained in PHB genes. As a result, numerous microsyntenic gene pairs among soybean, Medicago, Lotus and Phaseolus were identified. Most soybean PHB genes exhibited different expression levels in various tissues and developmental stages through expression analysis using publicly available RNA-seq datasets. The 11 GmPHB genes from III_B subgroup were examined by qPCR for their expression in two soybean cultivar after infection by Phytophthora sojae. Besides three GmPHB genes previous reported by us, here other four genes also were rapidly induced by P. sojae infection in the resistant genotype, while induction was very weak in the susceptible genotype. The comprehensive overview of the PHB gene family in soybean genome will provide useful information for further functional analysis of the PHB gene family in soybean.
引用
收藏
页码:1095 / 1106
页数:12
相关论文
共 50 条
  • [1] Genome-wide analysis of the PHB gene family in Glycine max (L.) Merr.
    Min Song
    Xiangyong Peng
    Caifu Du
    Lei Lei
    Tao Zhang
    Yang Xiang
    Genes & Genomics, 2017, 39 : 1095 - 1106
  • [2] Genome-Wide Identification of the Phytocyanin Gene Family and Its Potential Function in Salt Stress in Soybean (Glycine max (L.) Merr.)
    Wang, Li
    Zhang, Jinyu
    Li, Huici
    Zhang, Gongzhan
    Hu, Dandan
    Zhang, Dan
    Xu, Xinjuan
    Yang, Yuming
    Huang, Zhongwen
    AGRONOMY-BASEL, 2023, 13 (10):
  • [3] Genome-Wide Association Study for Resistance to Phytophthora sojae in Soybean [Glycine max (L.) Merr.]
    You, Hee Jin
    Zhao, Ruihua
    Choi, Yu-Mi
    Kang, In-Jeong
    Lee, Sungwoo
    PLANTS-BASEL, 2024, 13 (24):
  • [4] Genome-Wide Association Analysis of Active Accumulated Temperature versus Flowering Time in Soybean [Glycine max (L.) Merr.]
    Yao, Xindong
    Zhang, Dayong
    AGRONOMY-BASEL, 2024, 14 (04):
  • [5] Genome-Wide Association study for root system architecture traits in field soybean [Glycine max (L.) Merr.]
    Rathore, Pallavi
    Shivashakarappa, Kuber
    Ghimire, Niraj
    Dumenyo, Korsi
    Yadegari, Zeinab
    Taheri, Ali
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.)
    Wang, Yuange
    Liu, Huaihua
    Wang, Shuping
    Li, Hongjie
    PLANT GROWTH REGULATION, 2017, 81 (02) : 265 - 275
  • [7] Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.)
    Yuange Wang
    Huaihua Liu
    Shuping Wang
    Hongjie Li
    Plant Growth Regulation, 2017, 81 : 265 - 275
  • [8] Genetic dissection of resistance to Phytophthora sojae using genome-wide association and linkage analysis in soybean [Glycine max (L.) Merr.]
    You, Hee Jin
    Jang, Ik Hyun
    Moon, Jung-Kyung
    Kang, In-Jeong
    Kim, Ji-Min
    Kang, Sungtaeg
    Lee, Sungwoo
    THEORETICAL AND APPLIED GENETICS, 2024, 137 (12)
  • [9] Deciphering of Genomic Loci Associated with Alkaline Tolerance in Soybean [Glycine max (L.) Merr.] by Genome-Wide Association Study
    Yang, Xinjing
    Zhang, Ye
    Bhat, Javaid Akhter
    Wang, Mingjing
    Zheng, Huanbin
    Bu, Moran
    Zhao, Beifang
    Yang, Suxin
    Feng, Xianzhong
    PLANTS-BASEL, 2025, 14 (03):
  • [10] Genome-wide SNP-based association mapping of resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.)
    Niu, Jingping
    Guo, Na
    Zhang, Zhang
    Wang, Zili
    Huang, Jianli
    Zhao, Jinming
    Chang, Fangguo
    Wang, Haitang
    Zhao, Tuanjie
    Xing, Han
    EUPHYTICA, 2018, 214 (10)