Dynamics of infectious disease transmission by inhalable respiratory droplets

被引:96
作者
Stilianakis, Nikolaos I. [1 ,2 ]
Drossinos, Yannis [1 ,3 ]
机构
[1] Commiss European Communities, Joint Res Ctr, I-21027 Ispra, VA, Italy
[2] Univ Erlangen Nurnberg, Dept Biometry & Epidemiol, Erlangen, Germany
[3] Newcastle Univ, Sch Mech & Syst Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
respiratory droplets; aerosol; influenza; dynamics; epidemic; INFLUENZA-A; SPREAD; PARTICLES; SURVIVAL; VIRUSES; RISK;
D O I
10.1098/rsif.2010.0026
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmission of respiratory infectious diseases in humans, for instance influenza, occurs by several modes. Respiratory droplets provide a vector of transmission of an infectious pathogen that may contribute to different transmission modes. An epidemiological model incorporating the dynamics of inhalable respiratory droplets is developed to assess their relevance in the infectious process. Inhalable respiratory droplets are divided into respirable droplets, with droplet diameter less than 10 mu m, and inspirable droplets, with diameter in the range 10-100 mu m: both droplet classes may be inhaled or settle. Droplet dynamics is determined by their physical properties (size), whereas population dynamics is determined by, among other parameters, the pathogen infectivity and the host contact rates. Three model influenza epidemic scenarios, mediated by different airborne or settled droplet classes, are analysed. The scenarios are distinguished by the characteristic times associated with breathing at contact and with hand-to-face contact. The scenarios suggest that airborne transmission, mediated by respirable droplets, provides the dominant transmission mode in middle and long-term epidemics, whereas inspirable droplets, be they airborne or settled, characterize short-term epidemics with high attack rates. The model neglects close-contact transmission by droplet sprays (direct projection onto facial mucous membranes), retaining close-contact transmission by inspirable droplets.
引用
收藏
页码:1355 / 1366
页数:12
相关论文
共 38 条
[1]  
[Anonymous], 2008, MODELING INFECT DIS, DOI DOI 10.1515/9781400841035
[2]   Quantifying the routes of transmission for pandemic influenza [J].
Atkinson, Michael P. ;
Wein, Lawrence M. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (03) :820-867
[3]   SURVIVAL OF INFLUENZA-VIRUSES ON ENVIRONMENTAL SURFACES [J].
BEAN, B ;
MOORE, BM ;
STERNER, B ;
PETERSON, LR ;
GERDING, DN ;
BALFOUR, HH .
JOURNAL OF INFECTIOUS DISEASES, 1982, 146 (01) :47-51
[4]   Significance of fomites in the spread of respiratory and enteric viral disease [J].
Boone, Stephanie A. ;
Gerba, Charles P. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (06) :1687-1696
[5]   Transmission of influenza A in human beings [J].
Brankston, Gabrielle ;
Gitterman, Leah ;
Hirji, Zahir ;
Lemieux, Camille ;
Gardam, Michael .
LANCET INFECTIOUS DISEASES, 2007, 7 (04) :257-265
[6]   Time lines of infection and disease in human influenza: A review of volunteer challenge studies [J].
Carrat, Fabrice ;
Vergu, Elisabeta ;
Ferguson, Neil M. ;
Lemaitre, Magali ;
Cauchemez, Simon ;
Leach, Steve ;
Valleron, Alain-Jacques .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 167 (07) :775-785
[7]   Characterization of expiration air jets and droplet size distributions immediately at the mouth opening [J].
Chao, C. Y. H. ;
Wan, M. P. ;
Morawska, L. ;
Johnson, G. R. ;
Ristovski, Z. D. ;
Hargreaves, M. ;
Mengersen, K. ;
Corbett, S. ;
Li, Y. ;
Xie, X. ;
Katoshevski, D. .
JOURNAL OF AEROSOL SCIENCE, 2009, 40 (02) :122-133
[8]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[9]  
Drossinos Y., 2006, MULTIPHASE FLOW HDB
[10]   THE SIZE AND THE DURATION OF AIR-CARRIAGE OF RESPIRATORY DROPLETS AND DROPLET-NUCLEI [J].
DUGUID, JP .
JOURNAL OF HYGIENE, 1946, 44 (06) :471-479