Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current ICRAC

被引:197
作者
Gilabert, JA [1 ]
Parekh, AB [1 ]
机构
[1] Univ Oxford, Dept Physiol, Lab Mol & Cellular Signalling, Oxford OX1 3PT, England
关键词
Ca2+ buffering; mitochondria; store-operated Ca2+ entry;
D O I
10.1093/emboj/19.23.6401
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eukaryotic cells, hormones and neurotransmitters that engage the phosphoinositide pathway evoke a biphasic increase in intracellular free Ca2+ concentration: an initial transient release of Ca2+ from intracellular stores is followed by a sustained phase of Ca2+ influx. This influx is generally store dependent. Most attention has focused on the link between the endoplasmic reticulum and store-operated Ca2+ channels in the plasma membrane. Here, me describe that respiring mitochondria are also essential for the activation of macroscopic store-operated Ca2+ currents under physiological conditions of weak intracellular Ca2+ buffering. We further show that Ca2+-dependent slow inactivation of Ca2+ influx, a widespread but poorly understood phenomenon, is regulated by mitochondrial buffering of cytosolic Ca2+. Thus, by enabling macroscopic store-operated Ca2+ current to activate, and then by controlling its extent and duration, mitochondria play a crucial role in all stages of store-operated Ca2+ influx. Store-operated Ca2+ entry reflects a dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane.
引用
收藏
页码:6401 / 6407
页数:7
相关论文
共 28 条
[1]   Mitochondrial participation in the intracellular Ca2+ network [J].
Babcock, DF ;
Herrington, J ;
Goodwin, PC ;
Park, YB ;
Hille, B .
JOURNAL OF CELL BIOLOGY, 1997, 136 (04) :833-844
[2]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325
[3]   Role of the inositol 1,4,5-trisphosphate receptor in Ca2+ feedback inhibition of calcium release-activated calcium current (Icrac) [J].
Broad, LM ;
Armstrong, DL ;
Putney, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (46) :32881-32888
[4]   Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death [J].
Duchen, MR .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 516 (01) :1-17
[5]   On the characterisation of the mechanism underlying passive activation of the Ca2+ release-activated Ca2+ current ICRAC in rat basophilic leukaemia cells [J].
Fierro, L ;
Parekh, AB .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 520 (02) :407-416
[6]   Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells [J].
Fierro, L ;
Parekh, AB .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 522 (02) :247-257
[7]   Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells [J].
Fierro, L ;
Parekh, AB .
JOURNAL OF MEMBRANE BIOLOGY, 1999, 168 (01) :9-17
[8]  
FOSKETT JK, 1994, J BIOL CHEM, V269, P31525
[9]   Ca2+ store dynamics determines the pattern of activation of the store-operated Ca2+ current ICRAC in response to InsP3 in rat basophilic leukaemia cells [J].
Glitsch, MD ;
Parekh, AB .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 523 (02) :283-290
[10]  
Gunter TE, 1990, AM J PHYSIOL, V258, pC755