Intravital bone imaging by two-photon excitation microscopy to identify osteocytic osteolysis in vivo

被引:30
作者
Sano, Hiroshige [1 ,2 ]
Kikuta, Junichi [1 ,3 ,4 ]
Furuya, Masayuki [1 ,3 ]
Kondo, Naoki [2 ]
Endo, Naoto [2 ]
Ishii, Masaru [1 ,3 ,4 ]
机构
[1] Osaka Univ, Dept Immunol & Cell Biol, Grad Sch Med & Frontier Biosci, Osaka, Japan
[2] Niigata Univ, Dept Orthoped Surg, Grad Sch Med & Dent Sci, Niigata, Japan
[3] Osaka Univ, WPI Immunol Frontier Res Ctr, Osaka, Japan
[4] JST, CREST, Tokyo, Japan
关键词
Osteocytic lacunae; Two-photon microscopy; Intravital imaging; Osteocyte; Osteocytic osteolysis; OSTEOCLAST PRECURSORS; FLUORESCENCE PROBES; HOMEOSTASIS; MATRIX; PERILACUNAR; OSTEOBLASTS; TURNOVER; CELLS; RATS; MICE;
D O I
10.1016/j.bone.2015.01.013
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Bone is a highly dynamic organ in which several cell types function cooperatively. Among these, osteocytes have recently emerged as an important regulator of bone homeostasis, although their mechanism of regulation is unclear. Here, intravital bone imaging by two-photon excitation microscopy allowed us to directly visualize osteocytic osteolysis', or resorption of bone in the lacuno-canalicular system. Osteocyte lacunae and the canalicular network in the cortex of murine tibiae were imaged by in vivo calcein staining, and local acidification in these structures was monitored using a topically applied pH sensor. We also demonstrated that sciatic neurectomy causes significant acidification around osteocytic lacunae and enlargement of lacuno-canalicular areas. These results provide strong evidence for osteocytic osteolysis, and demonstrate that two-photon intravital microscopy is useful for analysis of this phenomenon. (c) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 139
页数:6
相关论文
共 33 条
  • [1] Osteocytes: Regulating the Mineral Reserves?
    Arnett, Timothy R.
    [J]. JOURNAL OF BONE AND MINERAL RESEARCH, 2013, 28 (12) : 2433 - 2435
  • [2] Osteocyte regulation of bone mineral: a little give and take
    Atkins, G. J.
    Findlay, D. M.
    [J]. OSTEOPOROSIS INTERNATIONAL, 2012, 23 (08) : 2067 - 2079
  • [3] BAUD CA, 1962, ACTA ANAT, V51, P209
  • [4] Microgravity Induces Pelvic Bone Loss through Osteoclastic Activity, Osteocytic Osteolysis, and Osteoblastic Cell Cycle Inhibition by CDKN1a/p21
    Blaber, Elizabeth A.
    Dvorochkin, Natalya
    Lee, Chialing
    Alwood, Joshua S.
    Yousuf, Rukhsana
    Pianetta, Piero
    Globus, Ruth K.
    Burns, Brendan P.
    Almeida, Eduardo A. C.
    [J]. PLOS ONE, 2013, 8 (04):
  • [5] The Amazing Osteocyte
    Bonewald, Lynda F.
    [J]. JOURNAL OF BONE AND MINERAL RESEARCH, 2011, 26 (02) : 229 - 238
  • [6] BOYDE A, 1979, Scanning Electron Microscopy, P393
  • [7] Buried alive: How osteoblasts become osteocytes
    Franz-Odendaal, TA
    Hall, BK
    Witten, PE
    [J]. DEVELOPMENTAL DYNAMICS, 2006, 235 (01) : 176 - 190
  • [8] Dynamic live imaging of bone: opening a new era with 'bone histodynametry'
    Ishii, Masaru
    Fujimori, Sayumi
    Kaneko, Takeshi
    Kikuta, Junichi
    [J]. JOURNAL OF BONE AND MINERAL METABOLISM, 2013, 31 (05) : 507 - 511
  • [9] Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo
    Ishii, Masaru
    Kikuta, Junichi
    Shimazu, Yutaka
    Meier-Schellersheim, Martin
    Germain, Ronald N.
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2010, 207 (13) : 2793 - 2798
  • [10] Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis
    Ishii, Masaru
    Egen, Jackson G.
    Klauschen, Frederick
    Meier-Schellersheim, Martin
    Saeki, Yukihiko
    Vacher, Jean
    Proia, Richard L.
    Germain, Ronald N.
    [J]. NATURE, 2009, 458 (7237) : 524 - U8