Machine Learning Algorithms for Classification of First-Trimester Fetal Brain Ultrasound Images

被引:18
作者
Gofer, Stav [1 ,2 ]
Haik, Oren
Bardin, Ron [1 ,2 ]
Gilboa, Yinon [1 ,2 ]
Perlman, Sharon [1 ,2 ]
机构
[1] Helen Schneider Womens Hosp, Rabin Med Ctr, Ultrasound Unit, Beilinson Campus,9 Jabotinsky St, IL-49100 Petah Tiqwa, Israel
[2] Tel Aviv Univ, Sackler Sch Med, Tel Aviv, Israel
关键词
fetal cortex; first trimester; image processing; machine learning; nuchal translucency; ultrasound; INCREASED NUCHAL TRANSLUCENCY; CORTICAL DEVELOPMENT; DIAGNOSIS; MALFORMATIONS;
D O I
10.1002/jum.15860
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Objective To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images. Methods Two image segmentation methods processed high-resolution fetal brain images obtained during the nuchal translucency scan: "Statistical Region Merging" (SRM) and "Trainable Weka Segmentation" (TWS), with training and testing sets in the latter. Measurement of the fetal cerebral cortex in original and processed images served to evaluate the performance of the algorithms. Mean absolute percentage error (MAPE) was used as an accuracy index of the segmentation processing. Results The SRM plugin revealed a total MAPE of 1.71% +/- 1.62 SD (standard deviation) and a MAPE of 1.4% +/- 1.32 SD and 2.72% +/- 2.21 SD for the normal and increased NT groups, respectively. The TWS plugin displayed a MAPE of 1.71% +/- 0.59 SD (testing set). There were no significant differences between the training and testing sets after 5-fold cross-validation. The images obtained from normal NT fetuses and increased NT fetuses revealed a MAPE of 1.52% +/- 1.02 SD and 2.63% +/- 1.98 SD. Conclusions Our study demonstrates the feasibility of using ML algorithms to classify first-trimester fetal brain ultrasound images and lay the foundation for earlier diagnosis of fetal brain abnormalities.
引用
收藏
页码:1773 / 1779
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 2021, IMAGE CLASSIFICATION
[2]   Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification [J].
Arganda-Carreras, Ignacio ;
Kaynig, Verena ;
Rueden, Curtis ;
Eliceiri, Kevin W. ;
Schindelin, Johannes ;
Cardona, Albert ;
Seung, H. Sebastian .
BIOINFORMATICS, 2017, 33 (15) :2424-2426
[3]   Long-term outcome in apparently healthy children with increased nuchal translucency in the first trimester screening [J].
Ayras, Outi ;
Eronen, Marianne ;
Tikkanen, Minna ;
Rahkola-Soisalo, Paivi ;
Paavonen, Jorma ;
Stefanovic, Vedran .
ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2016, 95 (05) :541-546
[4]  
Brownlee J., 2019, STAT METHODS MACHINE, V291
[5]   Neurodevelopmental outcome at 2 years of corrected age in fetuses with increased nuchal translucency thickness and normal karyotype compared with matched controls [J].
Buffin, R. ;
Fichez, A. ;
Decullier, E. ;
Roux, A. ;
Bin, S. ;
Combourieu, D. ;
Pastor-Diez, B. ;
Huissoud, C. ;
Picaud, J. -C. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2021, 57 (05) :790-797
[6]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[7]   Mean Absolute Percentage Error for regression models [J].
de Myttenaere, Arnaud ;
Golden, Boris ;
Le Grand, Benedicte ;
Rossi, Fabrice .
NEUROCOMPUTING, 2016, 192 :38-48
[8]   A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images [J].
Ghose, Soumya ;
Oliver, Arnau ;
Mitra, Jhimli ;
Marti, Robert ;
Llado, Xavier ;
Freixenet, Jordi ;
Sidibe, Desire ;
Vilanova, Joan C. ;
Comet, Josep ;
Meriaudeau, Fabrice .
MEDICAL IMAGE ANALYSIS, 2013, 17 (06) :587-600
[9]   Contribution of fetal cerebral MRI for diagnosis of structural anomalies [J].
Guibaud, Laurent .
PRENATAL DIAGNOSIS, 2009, 29 (04) :420-433
[10]   Increased nuchal translucency thickness and risk of neurodevelopmental disorders [J].
Hellmuth, S. G. ;
Pedersen, L. H. ;
Miltoft, C. B. ;
Petersen, O. B. ;
Kjaergaard, S. ;
Ekelund, C. ;
Tabor, A. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2017, 49 (05) :592-598