Entangled Sensor-Networks for Dark-Matter Searches

被引:34
作者
Brady, Anthony J. [1 ]
Gao, Christina [2 ,3 ,4 ]
Harnik, Roni [2 ]
Liu, Zhen [5 ]
Zhang, Zheshen [6 ,7 ]
Zhuang, Quntao [1 ,7 ]
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[2] Fermilab Natl Accelerator Lab, Theoret Phys Div, POB 500, Batavia, IL 60510 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Illinois, Illinois Ctr Adv Studies Universe, Urbana, IL 61801 USA
[5] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[6] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
[7] Univ Arizona, JC Wyant Coll Opt Sci, Tucson, AZ 85721 USA
来源
PRX QUANTUM | 2022年 / 3卷 / 03期
关键词
CP CONSERVATION; QUANTUM; NOISE;
D O I
10.1103/PRXQuantum.3.030333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The hypothetical axion particle (of unknown mass) is a leading candidate for dark matter (DM). Many experiments search for axions with microwave cavities, where an axion may convert into a cavity photon, leading to a feeble excess in the output power of the cavity. Recent work [Backes et al., Nature 590, 238 (2021)] has demonstrated that injecting squeezed vacuum into the cavity can substantially accelerate the axion search. Here, we go beyond and provide a theoretical framework to leverage the benefits of quantum squeezing in a network setting consisting of many sensor cavities. By forming a local sensor network, the signals among the cavities can be combined coherently to boost the axion search. Furthermore, injecting multipartite entanglement across the cavities-generated by splitting a squeezed vacuum-enables a global noise reduction. We explore the performance advantage of such a local, entangled sensor network, which enjoys both coherence between the axion signals and entanglement between the sensors. Our analyses are pertinent to next-generation DM-axion searches aiming to leverage a network of sensors and quantum resources in an optimal way. Finally, we assess the possibility of using a more exotic quantum state, the Gottesman-Kitaev-Preskill (GKP) state. Despite a constant-factor improvement in the scan time relative to a single-mode squeezed state in the ideal case, the advantage of employing a GKP state disappears when a practical measurement scheme is considered.
引用
收藏
页数:33
相关论文
共 76 条
[1]  
Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/NPHOTON.2013.177, 10.1038/nphoton.2013.177]
[2]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/NPHYS2083, 10.1038/nphys2083]
[3]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[4]   A COSMOLOGICAL BOUND ON THE INVISIBLE AXION [J].
ABBOTT, LF ;
SIKIVIE, P .
PHYSICS LETTERS B, 1983, 120 (1-3) :133-136
[5]   String axiverse [J].
Arvanitaki, Asimina ;
Dimopoulos, Savas ;
Dubovsky, Sergei ;
Kaloper, Nemanja ;
March-Russell, John .
PHYSICAL REVIEW D, 2010, 81 (12)
[6]   A quantum enhanced search for dark matter axions [J].
Backes, K. M. ;
Palken, D. A. ;
Al Kenany, S. ;
Brubaker, B. M. ;
Cahn, S. B. ;
Droster, A. ;
Hilton, Gene C. ;
Ghosh, Sumita ;
Jackson, H. ;
Lamoreaux, S. K. ;
Leder, A. F. ;
Lehnert, K. W. ;
Lewis, S. M. ;
Malnou, M. ;
Maruyama, R. H. ;
Rapidis, N. M. ;
Simanovskaia, M. ;
Singh, Sukhman ;
Speller, D. H. ;
Urdinaran, I ;
Vale, Leila R. ;
van Assendelft, E. C. ;
van Bibber, K. ;
Wang, H. .
NATURE, 2021, 590 (7845) :238-242
[7]   Search for Invisible Axion Dark Matter in the 3.3-4.2 μeV Mass Range [J].
Bartram, C. ;
Braine, T. ;
Burns, E. ;
Cervantes, R. ;
Crisosto, N. ;
Du, N. ;
Korandla, H. ;
Leum, G. ;
Mohapatra, P. ;
Nitta, T. ;
Rosenberg, L. J. ;
Rybka, G. ;
Yang, J. ;
Clarke, John ;
Siddiqi, I ;
Agrawal, A. ;
Dixit, A., V ;
Awida, M. H. ;
Chou, A. S. ;
Hollister, M. ;
Knirck, S. ;
Sonnenschein, A. ;
Wester, W. ;
Gleason, J. R. ;
Hipp, A. T. ;
Jois, S. ;
Sikivie, P. ;
Sullivan, N. S. ;
Tanner, D. B. ;
Lentz, E. ;
Khatiwada, R. ;
Carosi, G. ;
Robertson, N. ;
Woollett, N. ;
Duffy, L. D. ;
Boutan, C. ;
Jones, M. ;
LaRoque, B. H. ;
Oblath, N. S. ;
Taubman, M. S. ;
Daw, E. J. ;
Perry, M. G. ;
Buckley, J. H. ;
Gaikwad, C. ;
Hoffman, J. ;
Murch, K. W. ;
Goryachev, M. ;
McAllister, B. T. ;
Quiskamp, A. ;
Thomson, C. .
PHYSICAL REVIEW LETTERS, 2021, 127 (26)
[8]  
Binney J., 2008, Galactic Dynamics: Second Edition
[9]   Extended Search for the Invisible Axion with the Axion Dark Matter Experiment [J].
Braine, T. ;
Cervantes, R. ;
Crisosto, N. ;
Du, N. ;
Kimes, S. ;
Rosenberg, L. J. ;
Rybka, G. ;
Yang, J. ;
Bowring, D. ;
Chou, A. S. ;
Khatiwada, R. ;
Sonnenschein, A. ;
Wester, W. ;
Carosi, G. ;
Woollett, N. ;
Duffy, L. D. ;
Bradley, R. ;
Boutan, C. ;
Jones, M. ;
LaRoque, B. H. ;
Oblath, N. S. ;
Taubman, M. S. ;
Clarke, J. ;
Dove, A. ;
Eddins, A. ;
O'Kelley, S. R. ;
Nawaz, S. ;
Siddiqi, I ;
Stevenson, N. ;
Agrawal, A. ;
Dixit, A., V ;
Gleason, J. R. ;
Jois, S. ;
Sikivie, P. ;
Solomon, J. A. ;
Sullivan, N. S. ;
Tanner, D. B. ;
Lentz, E. ;
Daw, E. J. ;
Buckley, J. H. ;
Harrington, P. M. ;
Henriksen, E. A. ;
Murch, K. W. .
PHYSICAL REVIEW LETTERS, 2020, 124 (10)
[10]   Error-Detected State Transfer and Entanglement in a Superconducting Quantum Network [J].
Burkhart, Luke D. ;
Teoh, James D. ;
Zhang, Yaxing ;
Axline, Christopher J. ;
Frunzio, Luigi ;
Devoret, M. H. ;
Jiang, Liang ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PRX QUANTUM, 2021, 2 (03)