Liouville-type theorems for biharmonic maps between Riemannian manifolds

被引:36
作者
Baird, Paul [1 ]
Fardoun, Ali [1 ]
Ouakkas, Seddik
机构
[1] Univ Bretagne Occidentale, Lab CNRS, UMR 6205, Dept Math, F-29238 Brest 3, France
关键词
Liouville theorem; biharmonic map; HARMONIC MAPS;
D O I
10.1515/ACV.2010.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Liouville type theorems for biharmonic maps from complete manifolds and from Euclidean balls.
引用
收藏
页码:49 / 68
页数:20
相关论文
共 50 条
[21]   Nonexistence of proper p-biharmonic maps and Liouville type theorems I: case of p ≥ 2 [J].
Han, Yingbo ;
Luo, Yong .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (02) :409-426
[22]   Biharmonic maps between warped product manifolds [J].
Balmus, A. ;
Montaldo, S. ;
Oniciuc, C. .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) :449-466
[23]   Liouville Theorems for Holomorphic Maps on Pseudo-Hermitian Manifolds [J].
Haojie Chen ;
Yibin Ren .
The Journal of Geometric Analysis, 2022, 32
[24]   Liouville Theorems for Holomorphic Maps on Pseudo-Hermitian Manifolds [J].
Chen, Haojie ;
Ren, Yibin .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
[25]   On Liouville-type theorems for the 2D stationary MHD equations [J].
De Nitti, Nicola ;
Hounkpe, Francis ;
Schulz, Simon .
NONLINEARITY, 2022, 35 (02) :870-888
[26]   Liouville theorems for fully nonlinear elliptic equations on spherically symmetric Riemannian manifolds [J].
Fabio Punzo .
Nonlinear Differential Equations and Applications NoDEA, 2013, 20 :1295-1315
[27]   Liouville theorems for fully nonlinear elliptic equations on spherically symmetric Riemannian manifolds [J].
Punzo, Fabio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03) :1295-1315
[28]   Computing harmonic maps between Riemannian manifolds [J].
Gaster, Jonah ;
Loustau, Brice ;
Monsaingeon, Leonard .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, :531-580
[29]   Biharmonic maps between doubly warped product manifolds [J].
Perktas, Selcen Yueksel ;
Kilic, Erol .
BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02) :159-170
[30]   Existence and Liouville theorems for V -harmonic maps from complete manifolds [J].
Qun Chen ;
Jürgen Jost ;
Hongbing Qiu .
Annals of Global Analysis and Geometry, 2012, 42 :565-584