Liouville-type theorems for biharmonic maps between Riemannian manifolds

被引:36
作者
Baird, Paul [1 ]
Fardoun, Ali [1 ]
Ouakkas, Seddik
机构
[1] Univ Bretagne Occidentale, Lab CNRS, UMR 6205, Dept Math, F-29238 Brest 3, France
关键词
Liouville theorem; biharmonic map; HARMONIC MAPS;
D O I
10.1515/ACV.2010.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Liouville type theorems for biharmonic maps from complete manifolds and from Euclidean balls.
引用
收藏
页码:49 / 68
页数:20
相关论文
共 14 条
[1]  
[Anonymous], P BEIJ S DIFF GEOM D
[2]   On constructing biharmonic maps and metrics [J].
Baird, P ;
Kamissoko, D .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (01) :65-75
[3]   Stress-energy tensors and the Lichnerowicz Laplacian [J].
Baird, Paul .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) :1329-1342
[4]   Conformal and semi-conformal biharmonic maps [J].
Baird, Paul ;
Fardoun, Ali ;
Ouakkas, Seddik .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (04) :403-414
[5]  
Eells J., 1978, B LOND MATH SOC, V10, P1, DOI DOI 10.1112/BLMS/10.1.1
[6]  
Hamilton R. S., 1975, Lecture Notes in Mathematics, V471
[7]   2-harmonic maps and their first and second variational formulas [J].
Jiang Guoying .
NOTE DI MATEMATICA, 2008, 28 :209-232
[8]  
KARCHER H, 1984, J REINE ANGEW MATH, V353, P165
[9]  
Lemaire L., 1978, J. Differ. Geom, V13, P51, DOI [10.4310/jdg/1214434347, DOI 10.4310/JDG/1214434347]
[10]  
Montaldo S., 2006, Rev. Unión Mat. Argent., V47, P1