An unconditionally stable rotational velocity-correction scheme for incompressible flows

被引:30
作者
Dong, S. [1 ]
Shen, J. [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Unconditional stability; Velocity-correction scheme; Spectral element method; Navier-Stokes equation; NAVIER-STOKES EQUATIONS; SEMI-LAGRANGIAN METHOD; PROJECTION METHODS; ACCURATE; APPROXIMATION; CONVERGENCE; STABILITY; SOLVERS;
D O I
10.1016/j.jcp.2010.05.037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an unconditionally stable splitting scheme for incompressible Navier-Stokes equations based on the rotational velocity-correction formulation. The main advantages of the scheme are: (i) it allows the use of time step sizes considerably larger than the widely-used semi-implicit type schemes: the time step size is only constrained by accuracy; (ii) it does not require the velocity and pressure approximation spaces to satisfy the usual inf-sup condition: in particular, the equal-order finite element/spectral element approximation spaces can be used; (iii) it only requires solving a pressure Poisson equation and a linear convection-diffusion equation at each time step. Numerical tests indicate that the computational cost of the new scheme for each time step, under identical time step sizes, is even less expensive than the semi-implicit scheme with low element orders. Therefore, the total computational cost of the new scheme can be significantly less than the usual semi-implicit scheme. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:7013 / 7029
页数:17
相关论文
共 40 条
[1]   Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations [J].
Achdou, Y ;
Guermond, JL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) :799-826
[2]  
BRAMBLE JH, 1988, MATH COMPUT, V50, P1, DOI 10.1090/S0025-5718-1988-0917816-8
[3]   Accurate projection methods for the incompressible Navier-Stokes equations [J].
Brown, DL ;
Cortez, R ;
Minion, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 168 (02) :464-499
[4]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[5]   PROJECTION METHOD .1. CONVERGENCE AND NUMERICAL BOUNDARY-LAYERS [J].
E, WN ;
LIU, JG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) :1017-1057
[6]   MULTISTEP TECHNIQUE WITH IMPLICIT DIFFERENCE SCHEMES FOR CALCULATING 2-DIMENSIONAL OR 3-DIMENSIONAL CAVITY FLOWS [J].
GODA, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (01) :76-95
[8]   Parallel performance of the coarse space linear vertex solver and low energy basis preconditioner for spectral/hp elements [J].
Grinberg, L. ;
Pekurovsky, D. ;
Sherwin, S. J. ;
Karniadakis, G. E. .
PARALLEL COMPUTING, 2009, 35 (05) :284-304
[9]   Error analysis of fully discrete velocity-correction methods for incompressible flows [J].
Guermond, J. L. ;
Shen, Jie ;
Yang, Xiaofeng .
MATHEMATICS OF COMPUTATION, 2008, 77 (263) :1387-1405
[10]   An overview of projection methods for incompressible flows [J].
Guermond, J. L. ;
Minev, P. ;
Shen, Jie .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (44-47) :6011-6045