BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER
|
2007年
/
1776卷
/
01期
关键词:
D O I:
10.1016/j.bbcan.2007.07.001
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Photodynamic therapy (PDT) is a recently developed anticancer modality utilizing the generation of singlet oxygen and other reactive oxygen species, through visible light irradiation of a photosensitive dye accumulated in the cancerous tissue. Multiple signaling cascades are concomitantly activated in cancer cells exposed to the photodynamic stress and depending on the subcellular localization of the damaging ROS, these signals are transduced into adaptive or cell death responses. Recent evidence indicates that PDT can kill cancer cells directly by the efficient induction of apoptotic as well as non-apoptotic cell death pathways. The identification of the molecular effectors regulating the cross-talk between apoptosis and other major cell death subroutines (e.g. necrosis, autophagic cell death) is an area of intense research in cancer therapy. Signaling molecules modulating the induction of different cell death pathways can become useful targets to induce or increase photokilling in cancer cells harboring defects in apoptotic pathways, which is a crucial step in carcinogenesis and therapy resistance. This review highlights recent developments aimed at deciphering the molecular interplay between cell death pathways as well as their possible therapeutic exploitation in pbotosensitized cells. (c) 2007 Elsevier B.V. All rights reserved.
机构:
Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
Hanahan, D
Weinberg, RA
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
机构:
Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
Hanahan, D
Weinberg, RA
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA