Genetic algorithms in parameter estimation for nonlinear regression models: an experimental approach

被引:21
|
作者
Kapanoglu, Muzaffer
Koc, Ilker Ozan [1 ]
Erdogmus, Senol
机构
[1] Osmangazi Univ, Dept Ind Engn, Fac Engn & Architecture, Eskisehir, Turkey
[2] Osmangazi Univ, Fac Arts & Sci, Dept Stat, Eskisehir, Turkey
关键词
genetic algorithms; nonlinear regression; parameter estimation; convergence analysis;
D O I
10.1080/10629360600688244
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we examine the genetic algorithms ( GAs) for parameter estimation of nonlinear regression models over a large set of test problems with three difficulty levels. A GA is developed based on a full-factorial experimental design. The proposed GA performs well for the test problems even for relatively larger intervals of the parameters. We analyze the effect of the preset difficulty levels of the test problems on the performance and the convergence properties of the developed GA. On the basis of the convergence analysis, we point out that the regression parameters that have stronger effect on the sum of squared errors converge much faster to their optimal values.
引用
收藏
页码:851 / 867
页数:17
相关论文
共 50 条
  • [1] Genetic algorithms in parameter estimation of nonlinear models for ship motions
    Liaw, CY
    Cheong, HF
    Xie, Q
    PROCEEDINGS OF THE SIXTH (1996) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 1996, 1996, : 387 - 392
  • [2] ALGORITHMS AND APPLICATIONS OF NONLINEAR PARAMETER-ESTIMATION OF ORTHOGONAL REGRESSION-MODELS
    ELMOURSI, AKM
    GFRERER, H
    ADVANCES IN ENGINEERING SOFTWARE, 1994, 21 (02) : 75 - 85
  • [3] A METHOD OF MOMENTS APPROACH TO PARAMETER ESTIMATION IN INTRINSICALLY NONLINEAR REGRESSION MODELS
    Singh, Trijya
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (01) : 1 - 20
  • [4] Parameter estimation of nonlinear system based on genetic algorithms
    Jiang, Bo
    Wang, Bingwen
    Kongzhi Lilun Yu Yinyong/Control Theory and Applications, 2000, 17 (01): : 150 - 152
  • [5] Nuisance Parameter Estimation Algorithms for Separable Nonlinear Models
    Chen, Long
    Chen, Jia-Bing
    Chen, Guang-Yong
    Gan, Min
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (11): : 7236 - 7247
  • [6] Improved genetic algorithms for varying parameter estimation in nonlinear system
    Gao, Tiehong
    Li, Chongxiao
    Han, Yanfang
    Tao, Mei
    Shu Ju Cai Ji Yu Chu Li/Journal of Data Acquisition and Processing, 2002, 17 (03):
  • [7] Set-membership nonlinear regression approach to parameter estimation
    Peric, Nikola D.
    Paulen, Radoslav
    Villanueva, Mario E.
    Chachuat, Benoit
    JOURNAL OF PROCESS CONTROL, 2018, 70 : 80 - 95
  • [8] A nonlinear regression based approach for multilayer soil parameter estimation
    Kang, Min-Jae
    Boo, Chang-Jin
    Kim, Ho-Chan
    Zurada, Jacek M.
    International Journal of Control and Automation, 2014, 7 (02): : 65 - 74
  • [9] Stochastic optimization algorithms of a Bayesian design criterion for Bayesian parameter estimation of nonlinear regression models: Application in pharmacokinetics
    Merle, Y
    Mentre, F
    MATHEMATICAL BIOSCIENCES, 1997, 144 (01) : 45 - 70
  • [10] A New Hybrid Genetic Algorithm for Parameter Estimation of Nonlinear Regression Modeling
    Chen, Jinshan
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, 2015, 356 : 261 - 266