Probabilistic predictive principal component analysis for spatially misaligned and high-dimensional air pollution data with missing observations

被引:4
作者
Vu, Phuong T. [1 ,3 ]
Larson, Timothy, V [2 ]
Szpiro, Adam A. [1 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[2] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[3] Seattle Childrens Res Inst, Seattle, WA 98121 USA
关键词
air pollution; dimension reduction; missing data; multipollutant analysis; LONG-TERM EXPOSURE; SOURCE-APPORTIONMENT; UNITED-STATES; CHEMICAL-COMPOSITION; IMPUTATION METHODS; MEASUREMENT ERROR; AMBIENT PM2.5; OLDER-ADULTS; HEALTH; MORTALITY;
D O I
10.1002/env.2614
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate predictions of pollutant concentrations at new locations are often of interest in air pollution studies on fine particulate matters (PM2.5), in which data are usually not measured at all study locations. PM2.5 is also a mixture of many different chemical components. Principal component analysis (PCA) can be incorporated to obtain lowerdimensional representative scores of such multipollutant data. Spatial prediction can then be used to estimate these scores at new locations. Recently developed predictive PCA modifies the traditional PCA algorithm to obtain scores with spatial structures that can be well predicted at unmeasured locations. However, these approaches require complete data, whereas multipollutant data tend to have complex missing patterns in practice. We propose probabilistic versions of predictive PCA, which allow for flexible model-based imputation that can account for spatial information and subsequently improve the overall predictive performance.
引用
收藏
页数:17
相关论文
共 59 条
[1]   Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis [J].
Achilleos, Souzana ;
Kioumourtzoglou, Marianthi-Anna ;
Wu, Chih-Da ;
Schwartz, Joel D. ;
Koutrakis, Petros ;
Papatheodorou, Stefania I. .
ENVIRONMENT INTERNATIONAL, 2017, 109 :89-100
[2]   Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies [J].
Bell, Michelle L. ;
Dominici, Francesca ;
Ebisu, Keita ;
Zeger, Scott L. ;
Samet, Jonathan M. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2007, 115 (07) :989-995
[3]   Hospital Admissions and Chemical Composition of Fine Particle Air Pollution [J].
Bell, Michelle L. ;
Ebisu, Keita ;
Peng, Roger D. ;
Samet, Jonathan M. ;
Dominici, Francesca .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2009, 179 (12) :1115-1120
[4]   A National Prediction Model for PM2.5 Component Exposures and Measurement Error-Corrected Health Effect Inference [J].
Bergen, Silas ;
Sheppard, Lianne ;
Sampson, Paul D. ;
Kim, Sun-Young ;
Richards, Mark ;
Vedal, Sverre ;
Kaufman, Joel D. ;
Szpiro, Adam A. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2013, 121 (09) :1017-1025
[5]   Adaptive predictive principal components for modeling multivariate air pollution [J].
Bose, Maitreyee ;
Larson, Timothy ;
Szpiro, Adam A. .
ENVIRONMETRICS, 2018, 29 (08)
[6]   Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems [J].
Brauer, M ;
Hoek, G ;
van Vliet, P ;
Meliefste, K ;
Fischer, P ;
Gehring, U ;
Heinrich, J ;
Cyrys, J ;
Bellander, T ;
Lewne, M ;
Brunekreef, B .
EPIDEMIOLOGY, 2003, 14 (02) :228-239
[7]   Air pollution and cardiovascular disease - A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association [J].
Brook, RD ;
Franklin, B ;
Cascio, W ;
Hong, YL ;
Howard, G ;
Lipsett, M ;
Luepker, R ;
Mittleman, M ;
Samet, J ;
Smith, SC ;
Tager, I .
CIRCULATION, 2004, 109 (21) :2655-2671
[8]   Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study [J].
Chan, Stephanie H. ;
Van Hee, Victor C. ;
Bergen, Silas ;
Szpiro, Adam A. ;
DeRoo, Lisa A. ;
London, Stephanie J. ;
Marshall, Julian D. ;
Kaufman, Joel D. ;
Sandler, Dale P. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2015, 123 (10) :951-958
[9]   Source identification of coarse particles in the Desert Southwest, USA using Positive Matrix Factorization [J].
Clements, Andrea L. ;
Fraser, Matthew P. ;
Upadhyay, Nabin ;
Herckes, Pierre ;
Sundblom, Michael ;
Lantz, Jeffrey ;
Solomon, Paul A. .
ATMOSPHERIC POLLUTION RESEARCH, 2017, 8 (05) :873-884
[10]  
Cook RD, 2010, STAT SINICA, V20, P927