On the Initial Value Problems for Caputo-Type Generalized Proportional Vector-Order Fractional Differential Equations

被引:5
作者
Abbas, Mohamed, I [1 ]
Hristova, Snezhana [2 ]
机构
[1] Alexandria Univ, Fac Sci, Dept Math & Comp Sci, Alexandria 21511, Egypt
[2] Paisij Hilendarski Univ Plovdiv, Fac Math & Informat, Plovdiv 4000, Bulgaria
关键词
vector-order fractional derivatives; generalized proportional fractional derivatives; Leray-Schauder nonlinear alternative;
D O I
10.3390/math9212720
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalized proportional vector-order fractional derivative in the Caputo sense is defined and studied. Two types of existence results for the mild solutions of the initial value problem for nonlinear Caputo-type generalized proportional vector-order fractional differential equations are obtained. With the aid of the Leray-Schauder nonlinear alternative and the Banach contraction principle, the main results are established. In the case of a local Lipschitz right hand side part function, the existence of a bounded mild solution is proved. Some examples illustrating the main results are provided.
引用
收藏
页数:10
相关论文
共 19 条
[1]   On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function [J].
Abbas, Mohamed, I ;
Ragusa, Maria Alessandra .
SYMMETRY-BASEL, 2021, 13 (02) :1-16
[2]   A Gronwall inequality via the generalized proportional fractional derivative with applications [J].
Alzabut, Jehad ;
Abdeljawad, Thabet ;
Jarad, Fahd ;
Sudsutad, Weerawat .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[3]  
Baleanu D., 2012, FRACTIONAL CALCULUS, V3, DOI 10.1142/10044
[4]  
Deimling, 1992, MULTIVALUED DIFFEREN, DOI DOI 10.1515/9783110874228
[5]   On some analytic properties of tempered fractional calculus [J].
Fernandez, Arran ;
Ustaoglu, Ceren .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366
[6]   Explicit Solutions of Initial Value Problems for Fractional Generalized Proportional Differential Equations with and without Impulses [J].
Hristova, Snezhana ;
Abbas, Mohamed I. .
SYMMETRY-BASEL, 2021, 13 (06)
[7]   GENERALIZED FRACTIONAL DERIVATIVES AND LAPLACE TRANSFORM [J].
Jarad, Fahd ;
Abdeljawad, Thabet .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03) :709-722
[8]   Generalized fractional derivatives generated by a class of local proportional derivatives [J].
Jarad, Fahd ;
Abdeljawad, Thabet ;
Alzabut, Jehad .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18) :3457-3471
[9]   Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain [J].
Jiang, H. ;
Liu, F. ;
Turner, I. ;
Burrage, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3377-3388
[10]  
Kilbas AA., 2006, N HOLLAND MATH STUD, V204