Reproducibility of CT-Based Hepatocellular Carcinoma Radiomic Features across Different Contrast Imaging Phases: A Proof of Concept on SORAMIC Trial Data

被引:16
作者
Ibrahim, Abdalla [1 ,2 ,3 ,4 ,5 ,6 ]
Widaatalla, Yousif [1 ]
Refaee, Turkey [1 ,7 ]
Primakov, Sergey [1 ,5 ,6 ]
Miclea, Razvan L. [2 ]
Oecal, Osman [8 ]
Fabritius, Matthias P. [8 ]
Ingrisch, Michael [8 ]
Ricke, Jens [8 ]
Hustinx, Roland [3 ,4 ]
Mottaghy, Felix M. [2 ,5 ,6 ]
Woodruff, Henry C. [1 ,2 ]
Seidensticker, Max [8 ]
Lambin, Philippe [1 ,2 ]
机构
[1] Maastricht Univ, GROW Sch Oncol, Dept Precis Med, D Lab, NL-6200 MD Maastricht, Netherlands
[2] Maastricht Univ, Dept Radiol & Nucl Med, Med Ctr, NL-6200 MD Maastricht, Netherlands
[3] Univ Liege, Univ Hosp Liege, Dept Med Phys, Div Nucl Med & Oncol Imaging, B-4000 Liege, Belgium
[4] Univ Liege, GIGA CRC In Vivo Imaging, B-4000 Liege, Belgium
[5] Rhein Westfal TH Aachen, Univ Hosp, Dept Nucl Med, D-52074 Aachen, Germany
[6] Rhein Westfal TH Aachen, Univ Hosp, Comprehens Diagnost Ctr Aachen CDCA, D-52074 Aachen, Germany
[7] Jazan Univ, Fac Appl Med Sci, Dept Diagnost Radiol, Jazan 45142, Saudi Arabia
[8] Ludwig Maximilians Univ Munchen, Dept Radiol, Univ Hosp, D-80336 Munich, Germany
关键词
hepatocellular carcinoma; CT radiomics; domain translation; reproducibility; FDG-PET RADIOMICS; FEATURE STABILITY; TEST-RETEST; HARMONIZATION; PREDICTION; SCANNERS; IMAGES;
D O I
10.3390/cancers13184638
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Radiomics has been reported to have potential for correlating with clinical outcomes. However, handcrafted radiomic features (HRFs)-the quantitative features extracted from medical images-are limited by their sensitivity to variations in scanning parameters. Furthermore, radiomics analyses require big data with good quality to achieve desirable performances. In this study, we investigated the reproducibility of HRFs between scans acquired with the same scanning parameters except for the imaging phase (arterial and portal venous phases) to assess the possibilities of merging scans from different phases or replacing missing scans from a phase with other phases to increase data entries. Additionally, we assessed the potential of ComBat harmonization to remove batch effects attributed to this variation. Our results show that the majority of HRFs were not reproducible between the arterial and portal venous phases before or after ComBat harmonization. We provide a guide for analyzing scans of different imaging phases. Handcrafted radiomic features (HRFs) are quantitative imaging features extracted from regions of interest on medical images which can be correlated with clinical outcomes and biologic characteristics. While HRFs have been used to train predictive and prognostic models, their reproducibility has been reported to be affected by variations in scan acquisition and reconstruction parameters, even within the same imaging vendor. In this work, we evaluated the reproducibility of HRFs across the arterial and portal venous phases of contrast-enhanced computed tomography images depicting hepatocellular carcinomas, as well as the potential of ComBat harmonization to correct for this difference. ComBat harmonization is a method based on Bayesian estimates that was developed for gene expression arrays, and has been investigated as a potential method for harmonizing HRFs. Our results show that the majority of HRFs are not reproducible between the arterial and portal venous imaging phases, yet a number of HRFs could be used interchangeably between those phases. Furthermore, ComBat harmonization increased the number of reproducible HRFs across both phases by 1%. Our results guide the pooling of arterial and venous phases from different patients in an effort to increase cohort size, as well as joint analysis of the phases.
引用
收藏
页数:12
相关论文
共 47 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Neural network training for cross-protocol radiomic feature standardization in computed tomography [J].
Andrearczyk, Vincent ;
Depeursinge, Adrien ;
Muller, Henning .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
[4]   EASL and AASLD recommendations for the diagnosis of HCC to the test of daily practice [J].
Aube, Christophe ;
Oberti, Frederic ;
Lonjon, Julie ;
Pageaux, Georges ;
Seror, Olivier ;
N'Kontchou, Gisele ;
Rode, Agnes ;
Radenne, Sylvie ;
Cassinotto, Christophe ;
Vergniol, Julien ;
Bricault, Ivan ;
Leroy, Vincent ;
Ronot, Maxime ;
Castera, Laurent ;
Michalak, Sophie ;
Esvan, Maxime ;
Vilgrain, Valerie .
LIVER INTERNATIONAL, 2017, 37 (10) :1515-1525
[5]  
Bashyam V.M., 2020, ARXIV PREPRINT ARXIV
[6]   Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies [J].
Da-ano, R. ;
Masson, I ;
Lucia, F. ;
Dore, M. ;
Robin, P. ;
Alfieri, J. ;
Rousseau, C. ;
Mervoyer, A. ;
Reinhold, C. ;
Castelli, J. ;
De Crevoisier, R. ;
Ramee, J. F. ;
Pradier, O. ;
Schick, U. ;
Visvikis, D. ;
Hatt, M. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   DeepHarmony: A deep learning approach to contrast harmonization across scanner changes [J].
Dewey, Blake E. ;
Zhao, Can ;
Reinhold, Jacob C. ;
Carass, Aaron ;
Fitzgerald, Kathryn C. ;
Sotirchos, Elias S. ;
Saidha, Shiv ;
Oh, Jiwon ;
Pham, Dzung L. ;
Calabresi, Peter A. ;
van Zijl, Peter C. M. ;
Prince, Jerry L. .
MAGNETIC RESONANCE IMAGING, 2019, 64 :160-170
[8]   Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma [J].
Finn, Richard S. ;
Qin, Shukui ;
Ikeda, Masafumi ;
Galle, Peter R. ;
Ducreux, Michel ;
Kim, Tae-You ;
Kudo, Masatoshi ;
Breder, Valeriy ;
Merle, Philippe ;
Kaseb, Ahmed O. ;
Li, Daneng ;
Verret, Wendy ;
Xu, Derek-Zhen ;
Hernandez, Sairy ;
Liu, Juan ;
Huang, Chen ;
Mulla, Sohail ;
Wang, Yulei ;
Lim, Ho Yeong ;
Zhu, Andrew X. ;
Cheng, Ann-Lii .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (20) :1894-1905
[9]   Harmonization of cortical thickness measurements across scanners and sites [J].
Fortin, Jean-Philippe ;
Cullen, Nicholas ;
Sheline, Yvette I. ;
Taylor, Warren D. ;
Aselcioglu, Irem ;
Cook, Philip A. ;
Adams, Phil ;
Cooper, Crystal ;
Fava, Maurizio ;
McGrath, Patrick J. ;
McInnis, Melvin ;
Phillips, Mary L. ;
Trivedi, Madhukar H. ;
Weissman, Myrna M. ;
Shinohara, Russell T. .
NEUROIMAGE, 2018, 167 :104-120
[10]   Harmonization of multi-site diffusion tensor imaging data [J].
Fortin, Jean-Philippe ;
Parker, Drew ;
Tunc, Birkan ;
Watanabe, Takanori ;
Elliott, Mark A. ;
Ruparel, Kosha ;
Roalf, David R. ;
Satterthwaite, Theodore D. ;
Gur, Ruben C. ;
Gur, Raquel E. ;
Schultz, Robert T. ;
Verma, Ragini ;
Shinohara, Russell T. .
NEUROIMAGE, 2017, 161 :149-170