Synergy of Weakly-Solvated Electrolyte and Optimized Interphase Enables Graphite Anode Charge at Low Temperature

被引:103
作者
Yang, Yang [1 ,2 ]
Fang, Zhong [1 ,2 ]
Yin, Yue [1 ,2 ]
Cao, Yongjie [1 ,2 ]
Wang, Yonggang [1 ,2 ]
Dong, Xiaoli [1 ,2 ]
Xia, Yongyao [1 ,2 ]
机构
[1] Fudan Univ, Dept Chem, Inst New Energy, IChEM Collaborat Innovat Ctr Chem Energy Mat, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Inst New Energy, IChEM Collaborat Innovat Ctr Chem Energy Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Graphite; Li+ Migration Through SEI; Low-Temperature Batteries; Weakly Solvating Electrolyte; GRAPHITE/ELECTROLYTE INTERFACE; ION BATTERY; PERFORMANCE; LI+; CHEMISTRY; SEI;
D O I
10.1002/anie.202208345
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphite anode suffers from great capacity loss and even fails to charge (i.e. Li+-intercalation) under low temperature, mainly arising from the large overpotential including sluggish de-solvation process and insufficient ions movement in the solid electrolyte interphase (SEI). Herein, an electrolyte is developed by utilizing weakly solvated molecule ethyl trifluoroacetate and film-forming fluoroethylene carbonate to achieve smooth de-solvation and high ionic conductivity at low temperature. Evolution of SEI formed at different temperatures is further investigated to propose an effective room-temperature SEI formation strategy for low-temperature operations. The synergetic effect of tamed electrolyte and optimized SEI enables graphite with a reversible charge/discharge capacity of 183 mAh g(-1) at -30 degrees C and fast-charging up to 6C-rate at room temperature. Moreover, graphite||LiFePO4 full cell maintains a capacity retention of 78 % at -30 degrees C, and 37 % even at a super-low temperature of -60 degrees C. This work offers a progressive insight towards fast-charging and low-temperature batteries.
引用
收藏
页数:6
相关论文
共 50 条
[1]  
An J., 2022, ANGEW CHEM, V134
[2]   Self-Expanding Ion-Transport Channels on Anodes for Fast-Charging Lithium-Ion Batteries [J].
An, Juan ;
Zhang, Hongyu ;
Qi, Lu ;
Li, Guoxing ;
Li, Yuliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (07)
[3]   Strategies for the Analysis of Graphite Electrode Function [J].
Andersen, Henrik Lyder ;
Djuandhi, Lisa ;
Mittal, Uttam ;
Sharma, Neeraj .
ADVANCED ENERGY MATERIALS, 2021, 11 (48)
[4]  
[Anonymous], 2021, ANGEW CHEM, V133, P3444
[5]  
[Anonymous], 2021, ANGEW CHEM, V133, P89
[6]  
[Anonymous], 2021, ANGEW CHEM, V133, P4136
[7]   X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy [J].
Aurbach, D ;
Weissman, I ;
Schechter, A ;
Cohen, H .
LANGMUIR, 1996, 12 (16) :3991-4007
[8]   Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms [J].
Burns, J. C. ;
Krause, L. J. ;
Le, Dinh-Ba ;
Jensen, L. D. ;
Smith, A. J. ;
Xiong, Deijun ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) :A1417-A1422
[9]   The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries [J].
Cai, Wenlong ;
Yan, Chong ;
Yao, Yu-Xing ;
Xu, Lei ;
Chen, Xiao-Ru ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (23) :13007-13012
[10]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833