Strain engineering in two-dimensional nanomaterials beyond graphene

被引:299
作者
Deng, Shikai [1 ,2 ]
Sumant, Anirudha V. [2 ]
Berry, Vikas [1 ]
机构
[1] Univ Illinois, Dept Chem Engn, 810 South Clinton St, Chicago, IL 60607 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
Two-dimensional nanomaterials; Atomic sheets; Strain; Wrinkles; Anisotropic; Flexible devices; Heterostructures; HEXAGONAL BORON-NITRIDE; TRANSITION-METAL DICHALCOGENIDES; THIN-FILM TRANSISTORS; SINGLE-LAYER MOSE2; BLACK PHOSPHORUS; BAND-GAP; MECHANICAL-PROPERTIES; ELECTRONIC-PROPERTIES; MONOLAYER MOS2; THERMAL-CONDUCTIVITY;
D O I
10.1016/j.nantod.2018.07.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Strain engineering is the process of tuning a material's properties by altering its mechanical or structural attributes. Atomically thin two-dimensional nanomaterials (2DNMs), which have been extensively studied in recent years, are particularly well-suited for strain engineering because they can withstand large strain. Thermal vibration, surface adhesion, substrate deformation, pre-stretched substrate, epitaxial grown, thermal expansion mismatch, substrate topography modification, pressurized blisters and tip indentation can lead to strain in 2DNMs. Strain in 2DNMs can modify their atomic structure, lattice vibration, thermal conductivity, electronic and optical, electrical and device performance, and chemical activities. This review focuses on the structural and mechanical properties of various 2DNMs, different experimental strategies to induce strain and modify properties, and applications of strained 2DNMs. Also, the review proposes prospective research areas for future strain engineering studies in 2DNMs. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:14 / 35
页数:22
相关论文
共 186 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Strain engineering of WS2, WSe2, and WTe2 [J].
Amin, B. ;
Kaloni, T. P. ;
Schwingenschloegl, U. .
RSC ADVANCES, 2014, 4 (65) :34561-34565
[3]   Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate [J].
Annett, James ;
Cross, Graham L. W. .
NATURE, 2016, 535 (7611) :271-+
[4]  
[Anonymous], 2014, APPL PHYS LETT, V104
[5]   Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure [J].
Azcatl, Angelica ;
Qin, Xiaoye ;
Prakash, Abhijith ;
Zhang, Chenxi ;
Cheng, Lanxia ;
Wang, Qingxiao ;
Lu, Ning ;
Kim, Moon J. ;
Kim, Jiyoung ;
Cho, Kyeongjae ;
Addou, Rafik ;
Hinkle, Christopher L. ;
Appenzeller, Joerg ;
Wallace, Robert M. .
NANO LETTERS, 2016, 16 (09) :5437-5443
[6]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[7]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
[8]   Chemical Interaction-Guided, Metal-Free Growth of Large-Area Hexagonal Boron Nitride on Silicon-Based Substrates [J].
Behura, Sanjay ;
Phong Nguyen ;
Debbarma, Rousan ;
Che, Songwei ;
Seacrist, Michael R. ;
Berry, Vikas .
ACS NANO, 2017, 11 (05) :4985-4994
[9]   Dynamic Phase Engineering of Bendable Transition Metal Dichalcogenide Monolayers [J].
Berry, Joel ;
Zhou, Songsong ;
Han, Jian ;
Srolovitz, David J. ;
Haataja, Mikko P. .
NANO LETTERS, 2017, 17 (04) :2473-2481
[10]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709