Evasion of apoptosis plays a key role in cancer development, drug resistance, and recurrence. The BRCA1 locus product protein BRCA1-IRIS is overexpressed in several cisplatin-resistant ovarian cancer cell lines, but its relationship to resistance is uncertain. Here, we show that in human ovarian surface epithelial (HOSE) cells, overexpression of BRCA1-IRIS triggers expression of the antiapoptotic protein survivin. Negative modulation of phosphatidylinositol 3-kinase (PI3K) signaling or AKT silencing reduced survivin expression in this setting. Conversely, silencing BRCA1-IRIS in ovarian cancer cell lines derepressed PTEN expression along with the antiapoptotic AKT targets FOXO1 and FOXO3a, suppressing survivin expression. Cisplatin (<= 50 mu mol/L) exposure was sufficient to activate expression of the BRCA1-IRIS-AKT-survivin cascade in HOSE cells, whereas under similar conditions cisplatin failed to induce apoptosis in ovarian cancer cell lines expressing this regulatory cascade. Mechanistic investigations indicated that BRCA1-IRIS triggers survivin expression through a PI3K/AKT-dependent pathway involving NF-kappa B, but also through a PI3K/AKT-independent pathway involving PTEN, FOXO1, and FOXO3a. Our findings indicate how BRCA1-IRIS overexpression prevents chemotherapy-induced cell death by upregulating expression of survivin, and they highlight this regulatory cascade as a candidate focus to improve treatment of advanced drug-resistant ovarian cancers. Cancer Res; 70(21); 8782-91. (C) 2010 AACR.