Predictability of Arctic sea ice drift in coupled climate models

被引:3
作者
Reifenberg, Simon Felix [1 ,2 ,3 ]
Goessling, Helge Friedrich [1 ]
机构
[1] Alfred Wegener Inst Polar & Marine Res, Bremerhaven, Germany
[2] Univ Bremen, MARUM Ctr Marine Environm Sci, Bremen, Germany
[3] Univ Bremen, Inst Environm Phys, Bremen, Germany
关键词
PREDICTION; FORECASTS; SCALES; OCEAN;
D O I
10.5194/tc-16-2927-2022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Skillful sea ice drift forecasts are crucial for scientific mission planning and marine safety. Wind is the dominant driver of ice motion variability, but more slowly varying components of the climate system, in particular ice thickness and ocean currents, bear the potential to render ice drift more predictable than the wind. In this study, we provide the first assessment of Arctic sea ice drift predictability in four coupled general circulation models (GCMs), using a suite of "perfect-model" ensemble simulations. We find the position vector from Lagrangian trajectories of virtual buoys to remain predictable for at least a 90 (45) d lead time for initializations in January (July), reaching about 80% of the position uncertainty of a climatological reference forecast. In contrast, the uncertainty in Eulerian drift vector predictions reaches the level of the climatological uncertainty within 4 weeks. Spatial patterns of uncertainty, varying with season and across models, develop in all investigated GCMs. For two models providing near-surface wind data (AWI-CM1 and HadGEM1.2), we find spatial patterns and large fractions of the variance to be explained by wind vector uncertainty. The latter implies that sea ice drift is only marginally more predictable than wind. Nevertheless, particularly one of the four models (GFDL-CM3) shows a significant correlation of up to -0.85 between initial ice thickness and target position uncertainty in large parts of the Arctic. Our results provide a first assessment of the inherent predictability of ice motion in coupled climate models; they can be used to put current real-world forecast skill into perspective and highlight the model diversity of sea ice drift predictability.
引用
收藏
页码:2927 / 2946
页数:20
相关论文
共 50 条
[1]   Seasonal Arctic sea ice forecasting with probabilistic deep learning [J].
Andersson, Tom R. ;
Hosking, J. Scott ;
Perez-Ortiz, Maria ;
Paige, Brooks ;
Elliott, Andrew ;
Russell, Chris ;
Law, Stephen ;
Jones, Daniel C. ;
Wilkinson, Jeremy ;
Phillips, Tony ;
Byrne, James ;
Tietsche, Steffen ;
Sarojini, Beena Balan ;
Blanchard-Wrigglesworth, Eduardo ;
Aksenov, Yevgeny ;
Downie, Rod ;
Shuckburgh, Emily .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   Climate predictability on interannual to decadal time scales: the initial value problem [J].
Collins, M .
CLIMATE DYNAMICS, 2002, 19 (08) :671-692
[3]   An assessment of regional sea ice predictability in the Arctic ocean [J].
Cruz-Garcia, Ruben ;
Guemas, Virginie ;
Chevallier, Matthieu ;
Massonnet, Francois .
CLIMATE DYNAMICS, 2019, 53 (1-2) :427-440
[4]   Temporal and Spatial Patterns of Ship Traffic in the Canadian Arctic from 1990 to 2015 [J].
Dawson, Jackie ;
Pizzolato, Larissa ;
Howell, Stephen E. L. ;
Copland, Luke ;
Johnston, Margaret E. .
ARCTIC, 2018, 71 (01) :15-26
[5]   Will Arctic sea ice thickness initialization improve seasonal forecast skill? [J].
Day, J. J. ;
Hawkins, E. ;
Tietsche, S. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (21) :7566-7575
[6]   The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set version 1 [J].
Day, Jonathan J. ;
Tietsche, Steffen ;
Collins, Mat ;
Goessling, Helge F. ;
Guemas, Virginie ;
Guillory, Anabelle ;
Hurlin, William J. ;
Ishii, Masayoshi ;
Keeley, Sarah P. E. ;
Matei, Daniela ;
Msadek, Rym ;
Sigmond, Michael ;
Tatebe, Hiroaki ;
Hawkins, Ed .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (06) :2255-2270
[7]   Evaluating numerical and free-drift forecasts of sea ice drift during a Southern Ocean research expedition: An operational perspective [J].
de Vos, Marc ;
Barnes, Michael ;
Biddle, Louise C. ;
Swart, Sebastiaan ;
Ramjukadh, Carla-Louise ;
Vichi, Marcello .
JOURNAL OF OPERATIONAL OCEANOGRAPHY, 2022, 15 (03) :187-203
[8]   Changes in Seasonal Predictability due to Global Warming [J].
DelSole, Timothy ;
Yan, Xiaoqin ;
Dirmeyer, Paul A. ;
Fennessy, Mike ;
Altshuler, Eric .
JOURNAL OF CLIMATE, 2014, 27 (01) :300-311
[9]   The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3 [J].
Donner, Leo J. ;
Wyman, Bruce L. ;
Hemler, Richard S. ;
Horowitz, Larry W. ;
Ming, Yi ;
Zhao, Ming ;
Golaz, Jean-Christophe ;
Ginoux, Paul ;
Lin, S. -J. ;
Schwarzkopf, M. Daniel ;
Austin, John ;
Alaka, Ghassan ;
Cooke, William F. ;
Delworth, Thomas L. ;
Freidenreich, Stuart M. ;
Gordon, C. T. ;
Griffies, Stephen M. ;
Held, Isaac M. ;
Hurlin, William J. ;
Klein, Stephen A. ;
Knutson, Thomas R. ;
Langenhorst, Amy R. ;
Lee, Hyun-Chul ;
Lin, Yanluan ;
Magi, Brian I. ;
Malyshev, Sergey L. ;
Milly, P. C. D. ;
Naik, Vaishali ;
Nath, Mary J. ;
Pincus, Robert ;
Ploshay, Jeffrey J. ;
Ramaswamy, V. ;
Seman, Charles J. ;
Shevliakova, Elena ;
Sirutis, Joseph J. ;
Stern, William F. ;
Stouffer, Ronald J. ;
Wilson, R. John ;
Winton, Michael ;
Wittenberg, Andrew T. ;
Zeng, Fanrong .
JOURNAL OF CLIMATE, 2011, 24 (13) :3484-3519
[10]   Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? [J].
Eade, Rosie ;
Smith, Doug ;
Scaife, Adam ;
Wallace, Emily ;
Dunstone, Nick ;
Hermanson, Leon ;
Robinson, Niall .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (15) :5620-5628