The mellin transform of Hardy's function is entire

被引:1
|
作者
Jutila, M. [1 ]
机构
[1] Univ Turku, SF-20500 Turku, Finland
关键词
zeta function; Mellin transform; Hardy's function; holomorphic function; entire function; analytic continuation;
D O I
10.1134/S0001434610090348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an appropriately modified Mellin transform of the Hardy function Z(x) Is en entire function. The proof is based on the fact that the function (2(1-s) - 1)zeta(s) is integer.
引用
收藏
页码:612 / 616
页数:5
相关论文
共 50 条
  • [31] Note on fractional Mellin transform and applications
    Kilicman, Adem
    Omran, Maryam
    SPRINGERPLUS, 2016, 5 : 1 - 8
  • [32] VLSI Architecture for Separable Mellin Transform
    Mazumdar, Amartya
    Dhar, Anindya S.
    2009 ANNUAL IEEE INDIA CONFERENCE (INDICON 2009), 2009, : 352 - 355
  • [33] Jumping hedges on the strength of the Mellin transform
    Rodrigo, M.
    Mamon, R. S.
    RESULTS IN APPLIED MATHEMATICS, 2022, 14
  • [34] Atkinson's formula for Hardy's function
    Jutila, Matti
    JOURNAL OF NUMBER THEORY, 2009, 129 (11) : 2853 - 2878
  • [35] Mellin transform in connection with Wigner-Ville transform and linear canonical transform
    Jain, Sandhya
    Basu, Chandrani
    Jain, Pankaj
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025,
  • [36] Definition of the α-Mellin Transform and Some of Its Properties
    Nikolova, Yanka
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'11): PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE, 2011, 1410
  • [37] Boas-type results for Mellin transform
    Volosivets, S. S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (03) : 165 - 174
  • [38] New invariant descriptors based on the Mellin transform
    Metari, S.
    Deschenes, Francois
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 13 - +
  • [39] Mellin transform and conformable fractional operator: applications
    Ilie M.
    Biazar J.
    Ayati Z.
    SeMA Journal, 2019, 76 (2) : 203 - 215
  • [40] Mellin transform of shifted Airy functions and of their products
    Abramochkin, E. G.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (03) : 189 - 205