[2] Univ Oxford, Dept Stat, St Giles 24-29, Oxford OX1 3LB, England
[3] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, DIMAP, Coventry CV4 7AL, W Midlands, England
来源:
ELECTRONIC JOURNAL OF PROBABILITY
|
2019年
/
24卷
基金:
欧洲研究理事会;
英国工程与自然科学研究理事会;
英国科研创新办公室;
关键词:
arithmetic progression;
central limit theorem;
bivariate fluctuations;
method of moments;
exploration process;
DISTRIBUTIONS;
CONVERGENCE;
SUBGRAPHS;
D O I:
10.1214/19-EJP391
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We study arithmetic progressions {a, a + b, a + 2b, ..., a + (l- 1)b}, with l >= 3, in random subsets of the initial segment of natural numbers [n] := {1, 2, ..., n}. Given p is an element of [0, 1] we denote by [n](p) the random subset of [n] which includes every number with probability p, independently of one another. The focus lies on sparse random subsets, i.e. when p = p(n) = o(1) as n -> +infinity. Let X-l denote the number of distinct arithmetic progressions of length l which are contained in [n](p). We determine the limiting distribution for X-l not only for fixed l >= 3 but also when l = l(n) -> +infinity with l = o(log n). The main result concerns the joint distribution of the pair (X-l, X-l',), l > l', for which we prove a bivariate central limit theorem for a wide range of p. Interestingly, the question of whether the limiting distribution is trivial, degenerate, or non-trivial is characterised by the asymptotic behaviour (as n -> +infinity) of the threshold function psi(l) = psi(l)(n) := np(l-1) l. The proofs are based on the method of moments and combinatorial arguments, such as an algorithmic enumeration of collections of arithmetic progressions.
机构:
Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Mao, Yaping
Ozeki, Kenta
论文数: 0引用数: 0
h-index: 0
机构:
Yokohama Natl Univ, Fac Environm & Informat Sci, 79-2 Tokiwadai,Hodogaya-Ku, Yokohama 2408501, JapanQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Ozeki, Kenta
Robertson, Aaron
论文数: 0引用数: 0
h-index: 0
机构:
Colgate Univ, Dept Math, Hamilton, NY 13346 USAQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
Robertson, Aaron
Wang, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R ChinaQinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
机构:
Eotvos Lorand Univ, Algebra & Number Theory Dept, H-1117 Budapest, HungaryEotvos Lorand Univ, Algebra & Number Theory Dept, H-1117 Budapest, Hungary
Gyarmati, Katalin
Ruzsa, Imre Z.
论文数: 0引用数: 0
h-index: 0
机构:
Alfred Renyi Inst Math, H-1364 Budapest, HungaryEotvos Lorand Univ, Algebra & Number Theory Dept, H-1117 Budapest, Hungary