Bivariate fluctuations for the number of arithmetic progressions in random sets

被引:3
|
作者
Barhoumi-Andreani, Yacine [1 ]
Koch, Christoph [2 ]
Liu, Hong [3 ,4 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44780 Bochum, Germany
[2] Univ Oxford, Dept Stat, St Giles 24-29, Oxford OX1 3LB, England
[3] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, DIMAP, Coventry CV4 7AL, W Midlands, England
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2019年 / 24卷
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 英国科研创新办公室;
关键词
arithmetic progression; central limit theorem; bivariate fluctuations; method of moments; exploration process; DISTRIBUTIONS; CONVERGENCE; SUBGRAPHS;
D O I
10.1214/19-EJP391
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study arithmetic progressions {a, a + b, a + 2b, ..., a + (l- 1)b}, with l >= 3, in random subsets of the initial segment of natural numbers [n] := {1, 2, ..., n}. Given p is an element of [0, 1] we denote by [n](p) the random subset of [n] which includes every number with probability p, independently of one another. The focus lies on sparse random subsets, i.e. when p = p(n) = o(1) as n -> +infinity. Let X-l denote the number of distinct arithmetic progressions of length l which are contained in [n](p). We determine the limiting distribution for X-l not only for fixed l >= 3 but also when l = l(n) -> +infinity with l = o(log n). The main result concerns the joint distribution of the pair (X-l, X-l',), l > l', for which we prove a bivariate central limit theorem for a wide range of p. Interestingly, the question of whether the limiting distribution is trivial, degenerate, or non-trivial is characterised by the asymptotic behaviour (as n -> +infinity) of the threshold function psi(l) = psi(l)(n) := np(l-1) l. The proofs are based on the method of moments and combinatorial arguments, such as an algorithmic enumeration of collections of arithmetic progressions.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Quotients of primes in arithmetic progressions
    Micholson, Ace
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2012, 18 (02) : 56 - 57
  • [32] Arithmetic progressions and Pellian equations
    Aguirre, Julian
    Dujella, Andrej
    Carlos Peral, Juan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (04): : 683 - 695
  • [33] CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS
    Matomaki, Kaisa
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 94 (02) : 268 - 275
  • [34] Arithmetic progressions, quasi progressions, and Gallai-Ramsey colorings
    Mao, Yaping
    Ozeki, Kenta
    Robertson, Aaron
    Wang, Zhao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 193
  • [35] COLORINGS WITH ONLY RAINBOW ARITHMETIC PROGRESSIONS
    Pach, J.
    Tomon, I.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 507 - 515
  • [36] The Riemann Zeta Function on Arithmetic Progressions
    Steuding, Joern
    Wegert, Elias
    EXPERIMENTAL MATHEMATICS, 2012, 21 (03) : 235 - 240
  • [37] ON ARITHMETIC PROGRESSIONS ON GENUS TWO CURVES
    Ulas, Maciej
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) : 971 - 980
  • [38] A set of squares without arithmetic progressions
    Gyarmati, Katalin
    Ruzsa, Imre Z.
    ACTA ARITHMETICA, 2012, 155 (01) : 109 - 115
  • [39] PRIMES AND CONSECUTIVE SUMS IN ARITHMETIC PROGRESSIONS
    BESLIN, SJ
    KORTRIGHT, EV
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 49 (3-4) : 157 - 162
  • [40] Strings of special primes in arithmetic progressions
    Keenan Monks
    Sarah Peluse
    Lynnelle Ye
    Archiv der Mathematik, 2013, 101 : 219 - 234