Carbonaceous Aerosols over Lachung in the Eastern Himalayas: Primary Sources and Secondary Formation of Organic Aerosols in a Remote High-Altitude Environment

被引:16
作者
Arun, B. S. [1 ,2 ]
Gogoi, Mukunda M. [1 ]
Hegde, Prashant [1 ]
Borgohain, Arup [3 ]
Boreddy, Suresh K. R. [1 ]
Kundu, Shyam Sundar [3 ]
Babu, S. Suresh [1 ]
机构
[1] Vikram Sarabhai Space Ctr, Space Phys Lab, Thiruvananthapuram 695022, Kerala, India
[2] Univ Kerala, Dept Phys, Thiruvananthapuram 695034, Kerala, India
[3] North Eastern Space Applicat Ctr, Umiam 793103, India
来源
ACS EARTH AND SPACE CHEMISTRY | 2021年 / 5卷 / 09期
关键词
Himalayas; chemical composition; organic carbon; elemental carbon; secondary organic aerosol; positive matrix factorization; transport pathways; biomass burning; THERMODYNAMIC-EQUILIBRIUM MODEL; POSITIVE MATRIX FACTORIZATION; TIBET PLATEAU INSIGHTS; P; 5079; M; BLACK-CARBON; CHEMICAL-COMPOSITION; ELEMENTAL CARBON; TEMPORAL VARIABILITY; SOURCE APPORTIONMENT; SUBMICRON AEROSOLS;
D O I
10.1021/acsearthspacechem.1c00190
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Himalayan and Tibetan Plateau, containing the largest ice mass outside the polar region, is very sensitive to the influence of carbonaceous aerosols. In this regard, year-round measurements of carbonaceous aerosols, along with major ionic species, were made over a remote high-altitude (2700 m a.s.l.) site Lachung in the eastern Himalayas to elucidate seasonal source signatures, transport, and secondary organic aerosol (SOA) formation pathways. The observation showed the dominance of organic carbon (OC) in winter (7.6 +/- 2.6 mu g m(-3)), having its highest fractional share (32%) to PM10 during both winter and summer. Elemental carbon (EC) concentrations as high as 1 mu g m(-3) and EC/PM10 > 5% indicated significant anthropogenic influence over this remote site. High OC/EC (5.5 +/- 2.5) and the WSOC/OC (0.74 +/- 0.15) ratios indicated the dominance of water-soluble secondary organic aerosol (SOA) throughout the year. During spring, the aqueous phase formation (APF) of aerosols was prominent, which is indicated by the strong correlation of aerosol liquid water content with WSOC and SO42-. Further, the positive matrix factorization model demonstrated the dominant contribution by biomass burning sources (>25%), followed by primary emission including mineral dust (22%) and vehicular and industrial emissions (20.5%). The role of north-westerly advection (similar to 88%) was highest in spring, increasing the OC and EC concentrations (similar to 70%). These observations univocally support the dominant contributions by anthropogenic aerosols to the eastern Himalayas.
引用
收藏
页码:2493 / 2506
页数:14
相关论文
共 82 条
[1]   Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols [J].
Andreae, M. O. ;
Rosenfeld, D. .
EARTH-SCIENCE REVIEWS, 2008, 89 (1-2) :13-41
[2]   Physico-chemical and optical properties of aerosols at a background site (∼4 km a.s.l.) in the western Himalayas [J].
Arun, B. S. ;
Aswini, A. R. ;
Gogoi, Mukunda M. ;
Hegde, Prashant ;
Kompalli, Sobhan Kumar ;
Sharma, Parmanand ;
Babu, S. Suresh .
ATMOSPHERIC ENVIRONMENT, 2019, 218
[3]   Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol [J].
Asa-Awuku, A. ;
Engelhart, G. J. ;
Lee, B. H. ;
Pandis, S. N. ;
Nenes, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (03) :795-812
[4]   Carbonaceous and inorganic aerosols over a sub-urban site in peninsular India: Temporal variability and source characteristics [J].
Aswini, A. R. ;
Hegde, Prashant ;
Nair, Prabha R. .
ATMOSPHERIC RESEARCH, 2018, 199 :40-53
[5]   High altitude (∼4520 m amsl) measurements of black carbon aerosols over western trans-Himalayas: Seasonal heterogeneity and source apportionment [J].
Babu, S. S. ;
Chaubey, Jai Prakash ;
Moorthy, K. Krishna ;
Gogoi, Mukunda M. ;
Kompalli, Sobhan Kumar ;
Sreekanth, V. ;
Bagare, S. P. ;
Bhatt, Bhuvan C. ;
Gaur, Vinod K. ;
Prabhu, Tushar P. ;
Singh, N. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[6]   Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols [J].
Bianchi, F. ;
Junninen, H. ;
Bigi, A. ;
Sinclair, V. A. ;
Dada, L. ;
Hoyle, C. R. ;
Zha, Q. ;
Yao, L. ;
Ahonen, L. R. ;
Bonasoni, P. ;
Buenrostro Mazon, S. ;
Hutterli, M. ;
Laj, P. ;
Lehtipalo, K. ;
Kangasluoma, J. ;
Kerminen, V. -M. ;
Kontkanen, J. ;
Marinoni, A. ;
Mirme, S. ;
Molteni, U. ;
Petaja, T. ;
Riva, M. ;
Rose, C. ;
Sellegri, K. ;
Yan, C. ;
Worsnop, D. R. ;
Kulmala, M. ;
Baltensperger, U. ;
Dommen, J. .
NATURE GEOSCIENCE, 2021, 14 (01) :4-+
[7]   Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust [J].
Birch, ME ;
Cary, RA .
AEROSOL SCIENCE AND TECHNOLOGY, 1996, 25 (03) :221-241
[8]   Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility [J].
Blando, JD ;
Turpin, BJ .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (10) :1623-1632
[9]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[10]   Long-term (2001-2012) trends of carbonaceous aerosols from a remote island in the western North Pacific: an outflow region of Asian pollutants [J].
Boreddy, Suresh K. R. ;
Haque, M. Mozammel ;
Kawamura, Kimitaka .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (02) :1291-1306