Expression and characterization of a 70-kDa fragment of the insulin receptor that binds insulin -: Minimizing ligand binding domain of the insulin receptor
In order to characterize regions of the insulin receptor that are essential for ligand binding and possibly identify a smaller insulin-binding fragment of the receptor, we have used site-directed mutagenesis to construct a series of insulin receptor deletion mutants. From 112 to 246 amino acids were deleted from the alpha-subunit region comprising amino acids 469-729. The receptor constructs were expressed as soluble insulin receptor IgG fusion proteins in baby hamster kidney cells and were characterized in binding assays by immunoblotting and chemical cross-linking with radiolabeled insulin. The shortest receptor fragment identified was a free monomeric a-subunit deleted of amino acids 469-703 and 718-729 (exon 11); the mass of this receptor fragment was found by mass spectrometry to be 70 kDa. This small insulin receptor fragment bound insulin with an affinity (K-d) of 4.4 nM, which is similar to what was found for the full-length ectodomain of the insulin receptor (5.0 nM). Cross-linking experiments confirmed that the 70-kDa receptor fragment specifically bound insulin. In summary we have minimized the insulin binding domain of the insulin receptor by identifying a 70-kDa fragment of the ectodomain that retains insulin binding affinity making this an interesting candidate for detailed structural analysis.