New insight of tailor-made graphene oxide for the formation of atomic Co-N sites toward hydrogen evolution reaction

被引:18
作者
Jung, Jae Young [1 ,2 ]
Hong, Yu Lim [3 ]
Kim, Jeong-Gil [1 ]
Kim, Min Ji [1 ]
Kim, Young-Kwan [4 ]
Kim, Nam Dong [1 ]
机构
[1] Korea Inst Sci & Technol KIST, Funct Composites Mat Res Ctr, Jeollabuk Do 55324, South Korea
[2] Gwangju Inst Sci & Technol GIST, Sch Mat Sci & Engn, Gwangju 61005, South Korea
[3] Korea Inst Sci & Technol KIST, Carbon Composites Mat Res Ctr, Jeollabuk Do 55324, South Korea
[4] Dongguk Univ, Dept Chem, Seoul Campus, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Tailor-made graphene oxide; Atomic Co-N sites; Hydrogen evolution reaction; METAL-ORGANIC FRAMEWORKS; OXYGEN REDUCTION; DOPED GRAPHENE; SINGLE-ATOMS; NITROGEN; CARBON; FUNCTIONALIZATION; ADSORPTION; CATALYSTS; WATER;
D O I
10.1016/j.apsusc.2021.150254
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The designed synthesis of graphene oxide (GO) for the formation of nitrogen-coordinated atomic metal sites (M-N-C) is crucial for developing efficient M-N-C catalysts. Here, the effect of basal plane oxygen functional groups of GO on the adsorption of cobalt ions and their Co-N transition is investigated by tailoring the oxygen content and composition of oxygen functional groups on the basal plane of GO sheets. The tailor-made GO shows that the specific oxygen functional groups, such as hydroxyl, epoxy, and carbonyl groups, can be efficiently incorporated with formation of defected structures on the basal plane of GO sheets rather than their edge. The adsorption of cobalt ions on the GO sheets and their transition to the Co-N state are systematically investigated by XPS and XAFS analyses. Annealing temperature-controlled experiments reveal that the incorporation of nitrogen around cobalt atoms is facilitated by the increased number of oxygen functional groups on the basal plane rather than those on the edge of GO sheets, which provide energetically favorable environments for Co-N formation. The hydrogen evolution reaction (HER) activities of the resulting cobalt atom-immobilized and annealed GO (Co/GOx-T) catalysts correlate to the degree of Co-N saturation, while also demonstrating excellent HER catalytic durability.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups [J].
Chen, Ji ;
Zhang, Yao ;
Zhang, Miao ;
Yao, Bowen ;
Li, Yingru ;
Huang, Liang ;
Li, Chun ;
Shi, Gaoquan .
CHEMICAL SCIENCE, 2016, 7 (03) :1874-1881
[2]   Dual Single-Atomic Ni-N4and Fe-N4Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis [J].
Chen, Jiangyue ;
Li, Hao ;
Fan, Chuang ;
Meng, Qingwei ;
Tang, Yawen ;
Qiu, Xiaoyu ;
Fu, Gengtao ;
Ma, Tianyi .
ADVANCED MATERIALS, 2020, 32 (30)
[3]   Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction [J].
Chen, Wenxing ;
Pei, Jiajing ;
He, Chun-Ting ;
Wan, Jiawei ;
Ren, Hanlin ;
Zhu, Youqi ;
Wang, Yu ;
Dong, Juncai ;
Tian, Shubo ;
Cheong, Weng-Chon ;
Lu, Siqi ;
Zheng, Lirong ;
Zheng, Xusheng ;
Yan, Wensheng ;
Zhuang, Zhongbin ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) :16086-16090
[4]   Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups [J].
Chen, Ying ;
Xie, Bingqiao ;
Ren, Yingtao ;
Yu, Mengying ;
Qu, Yang ;
Xie, Ting ;
Zhang, Yong ;
Wu, Yucheng .
NANOSCALE RESEARCH LETTERS, 2014, 9
[5]   Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 [J].
Cheng, Yi ;
Zhao, Shiyong ;
Li, Haobo ;
He, Shuai ;
Veder, Jean-Pierre ;
Johannessen, Bernt ;
Xiao, Jianping ;
Lu, Shanfu ;
Pan, Jian ;
Chisholm, Mattew F. ;
Yang, Shi-Ze ;
Liu, Chang ;
Chen, Jingguang G. ;
Jiang, San Ping .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 :294-303
[6]   Pyridinic-Nitrogen-Dominated Graphene Aerogels with Fe-N-C Coordination for Highly Efficient Oxygen Reduction Reaction [J].
Cui, Xiaoyang ;
Yang, Shubin ;
Yan, Xingxu ;
Leng, Jiugou ;
Shuang, Shuang ;
Ajayan, Pulickel M. ;
Zhang, Zhengjun .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (31) :5708-5717
[7]   Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts [J].
Cui, Xinjiang ;
Li, Wu ;
Ryabchuk, Pavel ;
Junge, Kathrin ;
Beller, Matthias .
NATURE CATALYSIS, 2018, 1 (06) :385-397
[8]   Synthesis and reduction of large sized graphene oxide sheets [J].
Dong, Lei ;
Yang, Jieun ;
Chhowalla, Manish ;
Loh, Kian Ping .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (23) :7306-7316
[9]   General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities [J].
Fei, Huilong ;
Dong, Juncai ;
Feng, Yexin ;
Allen, Christopher S. ;
Wan, Chengzhang ;
Volosskiy, Boris ;
Li, Mufan ;
Zhao, Zipeng ;
Wang, Yiliu ;
Sun, Hongtao ;
An, Pengfei ;
Chen, Wenxing ;
Guo, Zhiying ;
Lee, Chain ;
Chen, Dongliang ;
Shakir, Imran ;
Liu, Mingjie ;
Hu, Tiandou ;
Li, Yadong ;
Kirkland, Angus I. ;
Duan, Xiangfeng ;
Huang, Yu .
NATURE CATALYSIS, 2018, 1 (01) :63-72
[10]   Atomic cobalt on nitrogen-doped graphene for hydrogen generation [J].
Fei, Huilong ;
Dong, Juncai ;
Arellano-Jimenez, M. Josefina ;
Ye, Gonglan ;
Kim, Nam Dong ;
Samuel, Errol L. G. ;
Peng, Zhiwei ;
Zhu, Zhuan ;
Qin, Fan ;
Bao, Jiming ;
Yacaman, Miguel Jose ;
Ajayan, Pulickel M. ;
Chen, Dongliang ;
Tour, James M. .
NATURE COMMUNICATIONS, 2015, 6