Eigenvalue multiplicity in cubic signed graphs

被引:0
作者
Chen, Yu [1 ]
Hou, Yaoping [1 ]
机构
[1] Hunan Normal Univ, Key Lab High Performance Comp & Stochast Informat, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Signed graph; Eigenvalue multiplicity; Star complement;
D O I
10.1016/j.laa.2021.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (G) over dot be a connected cubic signed graph of order nwith mu as an eigenvalue of multiplicity k, and let t = n - k. In this paper, we prove that (i). if mu is not an element of{-1, 0, 1} then k <= 1/2n with equality if and only if mu = +/-root 3, (G) over dot is switching isomorphic to the cube with all negative quadrangles; (ii). if mu = -1(resp(+), mu = 1) then k <= 1/2n + 1 with equality if and only if (G) over dot is switching isomorphic to (K-4, +)(resp. (K-4, -)); (iii). if mu = 0 then k <= 1/2n + 1 with equality if and only if (G) over dot is switching isomorphic to (K-3,K-3, +). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:95 / 111
页数:17
相关论文
共 12 条
  • [1] On the multiplicities of graph eigenvalues
    Bell, FK
    Rowlinson, P
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 401 - 408
  • [2] Bussemaker F.C., 1991, TABLES SIGNED GRAPHS
  • [3] Eigenvalue multiplicity in quartic graphs
    Capaverde, Juliane
    Rowlinson, Peter
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 535 : 160 - 170
  • [4] Clarke NE., 2001, J COMBIN MATH COMBIN, V37, P177
  • [5] Cvetkovic D., 2010, London Mathematical Society Student Texts, V75
  • [6] Signed distance in signed graphs
    Hameed, Shahul K.
    Shijin, T. V.
    Soorya, P.
    Germina, K. A.
    Zaslavsky, Thomas
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 608 : 236 - 247
  • [7] On signed graphs with just two distinct adjacency eigenvalues
    Hou, Yaoping
    Tang, Zikai
    Wang, Dijian
    [J]. DISCRETE MATHEMATICS, 2019, 342 (12)
  • [8] On eigenvalue multiplicity in signed graphs
    Ramezani, Farzaneh
    Rowlinson, Peter
    Stanic, Zoran
    [J]. DISCRETE MATHEMATICS, 2020, 343 (10)
  • [9] Eigenvalue multiplicity in regular graphs
    Rowlinson, Peter
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 269 : 11 - 17
  • [10] Eigenvalue multiplicity in cubic graphs
    Rowlinson, Peter
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 : 211 - 218