A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics

被引:56
|
作者
Bastankhah, Majid [1 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne, EPFL ENAC IIE WIRE, Wind Engn & Renewable Energy Lab WIRE, CH-1015 Lausanne, Switzerland
来源
ENERGIES | 2017年 / 10卷 / 07期
基金
瑞士国家科学基金会;
关键词
conditional averaging; miniature wind turbine; fatigue loads; PIV measurements; unsteady Structural loads; wake meandering; wind tunnel experiment; wind turbine wake; ATMOSPHERIC BOUNDARY-LAYER; LARGE-EDDY SIMULATION; TURBULENT-FLOW; POWER LOSSES; FARM; AERODYNAMICS; STABILITY; MODEL;
D O I
10.3390/en10070923
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An optimized three-bladed horizontal-axis miniature wind turbine, called WiRE-01, with the rotor diameter of 15 cm is designed and fully characterized in Part I of this study. In the current part of the study, we investigate the interaction of the turbine with a turbulent boundary layer. The comparison of the spectral density of the thrust force and the one of the incoming velocity revealed new insights on the use of turbine characteristics to estimate incoming flow conditions. High-resolution stereoscopic particle image-velocimetry (S-PIV) measurements were also performed in the wake of the turbine operating at optimal conditions. Detailed information on the velocity and turbulence structure of the turbine wake is presented and discussed, which can serve as a complete dataset for the validation of numerical models. The PIV data are also used to better understand the underlying mechanisms leading to unsteady loads on a downstream turbine at different streamwise and spanwise positions. To achieve this goal, a new method is developed to quantify and compare the effect of both turbulence and mean shear on the moment of the incoming momentum flux for a hypothetical turbine placed downstream. The results show that moment fluctuations caused by turbulence are bigger under full-wake conditions, whereas those caused by mean shear are clearly dominant under partial-wake conditions. Especial emphasis is also placed on how the mean wake flow distribution is affected by wake meandering. Conditional averaging based on the instantaneous position of the wake center revealed that when the wake meanders laterally to one side, a high-speed region exists on the opposite side. The results show that, due to this high-speed region, large lateral meandering motions do not lead to the expansion of the mean wake cross-section in the lateral direction.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance
    Bastankhah, Majid
    Porte-Agel, Fernando
    ENERGIES, 2017, 10 (07):
  • [2] A Wind Tunnel Experimental Study on the Wake Characteristics of a Horizontal Axis Wind Turbine
    Guo, Xingduo
    Li, Yinran
    Li, Rennian
    Ma, Yulong
    Wei, Kui
    JOURNAL OF THERMAL SCIENCE, 2025, 34 (01) : 145 - 158
  • [3] Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer: Part 2, the Wake Flow
    Philip E. Hancock
    Frauke Pascheke
    Boundary-Layer Meteorology, 2014, 151 : 23 - 37
  • [4] Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer: Part 2, the Wake Flow
    Hancock, Philip E.
    Pascheke, Frauke
    BOUNDARY-LAYER METEOROLOGY, 2014, 151 (01) : 23 - 37
  • [5] A wind tunnel study of adverse pressure gradient impact on wind turbine wake dynamics
    Bayron, Paul
    Kelso, Richard
    Chin, Rey
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 105
  • [6] Wind turbine wake: bridging the gap between large eddy simulations and wind tunnel experiments
    Gillyns, E.
    Buckingham, S.
    van Beeck, J.
    Winckelmans, G.
    WAKE CONFERENCE 2023, 2023, 2505
  • [7] Effect of wind turbine nacelle on turbine wake dynamics in large wind farms
    Foti, Daniel
    Yang, Xiaolei
    Shen, Lian
    Sotiropoulos, Fotis
    JOURNAL OF FLUID MECHANICS, 2019, 869 : 1 - 26
  • [8] Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel
    E. Barlas
    S. Buckingham
    J. van Beeck
    Boundary-Layer Meteorology, 2016, 158 : 27 - 42
  • [9] Wind tunnel study of wind turbine wake characteristics over two-dimensional hill considering the effects of terrain slope and turbine position
    Chen, Yao
    Yan, Bowen
    Yu, Meng
    Huang, Guoqing
    Qian, Guowei
    Yang, Qingshan
    Zhang, Kai
    Mo, Ruiyu
    APPLIED ENERGY, 2025, 380
  • [10] Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel
    Barlas, E.
    Buckingham, S.
    van Beeck, J.
    BOUNDARY-LAYER METEOROLOGY, 2016, 158 (01) : 27 - 42