Identification of phosphorus starvation inducible SnRK genes in tomato (Solanum lycopersicum L.)

被引:7
作者
Khurana, Ashima [1 ]
Akash [2 ]
Roychowdhury, Abhishek [2 ]
机构
[1] Univ Delhi, Zakir Husain Delhi Coll, Bot Dept, Delhi 110002, India
[2] Univ Hyderabad, Dept Plant Sci, Hyderabad 500046, Telangana, India
关键词
Phosphate starvation; Protein-protein interaction; SnRK gene family; Sucrose; Tomato; PROTEIN-KINASES; STRESS; ARABIDOPSIS; EXPRESSION; REGULATORS; RESPONSES; ACTIVATION; GENOMICS; FAMILY; PLANTS;
D O I
10.1007/s13562-021-00701-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sucrose non-fermenting 1-related protein kinases (SnRKs) mediate plant signalling pathways in response to different cues by phosphorylating target proteins. While full complement of these genes has been reported in several families, such information remains obscure in Solanaceae to date. Through a genome-wide identification approach, we report 40 SnRK members in the tomato genome. Multiple alignments and phylogenetic analysis grouped the identified genes in SnRK1, SnRK2, and SnRK3 subfamilies. SnRK1 subfamily comprises only two members, whereas SnRK3 being the largest category, is constituted by 30 members in tomato. Ten members of the SnRK3 subfamily are present in four tandemly duplicated chromosomal blocks. Transcript profiling of these genes during tomato development identified SlSnRK2.9 and SlSnRK3.3 with root-specific and SlSnRK2.7b with ripening-preferential mRNA abundance. The mRNA profiling of these genes by RNA-sequencing and qPCR revealed that SlSnRK3.10a, SlSnRK3.15a, and SlSnRK3.26 are activated at varying levels under phosphate (Pi) starvation. In-silico analysis anticipated a common set of proteins interacts with the selected phosphorus starvation inducible (PSI) SlSnRK genes. Overall, the present study identifies a set of PSI SnRKs in tomato and provides a comprehensive framework for their functional characterization in Solanaceae in the future.
引用
收藏
页码:987 / 998
页数:12
相关论文
共 30 条
[1]   Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato [J].
Akash ;
Parida, Adwaita Prasad ;
Srivastava, Alok ;
Mathur, Saloni ;
Sharma, Arun Kumar ;
Kumar, Rahul .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 162 :349-362
[2]   Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid [J].
Boudsocq, Marie ;
Droillard, Marie-Jo ;
Barbier-Brygoo, Helene ;
Lauriere, Christiane .
PLANT MOLECULAR BIOLOGY, 2007, 63 (04) :491-503
[3]   An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response [J].
Carianopol, Carina Steliana ;
Chan, Aaron Lorheed ;
Dong, Shaowei ;
Provart, Nicholas J. ;
Lumba, Shelley ;
Gazzarrini, Sonia .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[4]   SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana [J].
Cheng, Chunhong ;
Wang, Zhijuan ;
Ren, Ziyin ;
Zhi, Liya ;
Yao, Bin ;
Su, Chao ;
Liu, Liu ;
Li, Xia .
PLOS GENETICS, 2017, 13 (08)
[5]   The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice [J].
Diedhiou, Calliste J. ;
Popova, Olga V. ;
Dietz, Karl-Josef ;
Golldack, Dortje .
BMC PLANT BIOLOGY, 2008, 8 (1)
[6]   Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis [J].
Fujita, Yasunari ;
Nakashima, Kazuo ;
Yoshida, Takuya ;
Katagiri, Takeshi ;
Kidokoro, Satoshi ;
Kanamori, Norihito ;
Umezawa, Taishi ;
Fujita, Miki ;
Maruyama, Kyonoshin ;
Ishiyama, Kanako ;
Kobayashi, Masatomo ;
Nakasone, Shoko ;
Yamada, Kohji ;
Ito, Takuya ;
Shinozaki, Kazuo ;
Yamaguchi-Shinozaki, Kazuko .
PLANT AND CELL PHYSIOLOGY, 2009, 50 (12) :2123-2132
[7]   SNF1-related protein kinases: global regulators of carbon metabolism in plants? [J].
Halford, NG ;
Hardie, DG .
PLANT MOLECULAR BIOLOGY, 1998, 37 (05) :735-748
[8]   Sucrose transport in the phloem: integrating root responses to phosphorus starvation [J].
Hammond, John P. ;
White, Philip J. .
JOURNAL OF EXPERIMENTAL BOTANY, 2008, 59 (01) :93-109
[9]   The Arabidopsis CDPK-SnRK superfamily of protein kinases [J].
Hrabak, EM ;
Chan, CWM ;
Gribskov, M ;
Harper, JF ;
Choi, JH ;
Halford, N ;
Kudla, J ;
Luan, S ;
Nimmo, HG ;
Sussman, MR ;
Thomas, M ;
Walker-Simmons, K ;
Zhu, JK ;
Harmon, AC .
PLANT PHYSIOLOGY, 2003, 132 (02) :666-680
[10]   Novel signals in the regulation of Pi starvation responses in plants: facts and promises [J].
Isabel Puga, Maria ;
Rojas-Triana, Monica ;
de Lorenzo, Laura ;
Leyva, Antonio ;
Rubio, Vicente ;
Paz-Ares, Javier .
CURRENT OPINION IN PLANT BIOLOGY, 2017, 39 :40-49