Learning Adaptive Differential Evolution Algorithm From Optimization Experiences by Policy Gradient

被引:71
|
作者
Sun, Jianyong [1 ]
Liu, Xin [1 ]
Back, Thomas [2 ]
Xu, Zongben [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Leiden Univ, Leiden Inst Adv Comp Sci, NL-2300 RA Leiden, Netherlands
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Statistics; Sociology; Optimization; Process control; Deep learning; Reinforcement learning; Convergence; Adaptive differential evolution; deep learning; global optimization; policy gradient (PG); reinforcement learning (RL); REAL-PARAMETER OPTIMIZATION; GLOBAL OPTIMIZATION; ADAPTATION; STRATEGY;
D O I
10.1109/TEVC.2021.3060811
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution is one of the most prestigious population-based stochastic optimization algorithm for black-box problems. The performance of a differential evolution algorithm depends highly on its mutation and crossover strategy and associated control parameters. However, the determination process for the most suitable parameter setting is troublesome and time consuming. Adaptive control parameter methods that can adapt to problem landscape and optimization environment are more preferable than fixed parameter settings. This article proposes a novel adaptive parameter control approach based on learning from the optimization experiences over a set of problems. In the approach, the parameter control is modeled as a finite-horizon Markov decision process. A reinforcement learning algorithm, named policy gradient, is applied to learn an agent (i.e., parameter controller) that can provide the control parameters of a proposed differential evolution adaptively during the search procedure. The differential evolution algorithm based on the learned agent is compared against nine well-known evolutionary algorithms on the CEC'13 and CEC'17 test suites. Experimental results show that the proposed algorithm performs competitively against these compared algorithms on the test suites.
引用
收藏
页码:666 / 680
页数:15
相关论文
共 50 条
  • [1] An adaptive hybrid differential evolution algorithm for continuous optimization and classification problems
    Rauf, Hafiz Tayyab
    Bangyal, Waqas Haider Khan
    Lali, M. Ikramullah
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (17) : 10841 - 10867
  • [2] Co-Evolutionary Niching Differential Evolution Algorithm for Global Optimization
    Yan, Le
    Chen, Jianjun
    Li, Qi
    Mao, Jiafa
    Sheng, Weiguo
    IEEE ACCESS, 2021, 9 : 128095 - 128105
  • [3] Learning to Learn Evolutionary Algorithm: A Learnable Differential Evolution
    Liu, Xin
    Sun, Jianyong
    Zhang, Qingfu
    Wang, Zhenkun
    Xu, Zongben
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (06): : 1605 - 1620
  • [4] Local Binary Pattern-Based Adaptive Differential Evolution for Multimodal Optimization Problems
    Zhao, Hong
    Zhan, Zhi-Hui
    Lin, Ying
    Chen, Xiaofeng
    Luo, Xiao-Nan
    Zhang, Jie
    Kwong, Sam
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3343 - 3357
  • [5] Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
    Mohamed, Ali Wagdy
    Mohamed, Ali Khater
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (02) : 253 - 277
  • [6] A Self Adaptive Differential Evolution Algorithm for Global Optimization
    kumar, Pravesh
    Pant, Millie
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, 2010, 6466 : 103 - 110
  • [7] Solving Expensive Multimodal Optimization Problem by a Decomposition Differential Evolution Algorithm
    Gao, Weifeng
    Wei, Zhifang
    Gong, Maoguo
    Yen, Gary G.
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (04) : 2236 - 2246
  • [8] An adaptive mutation strategy for differential evolution algorithm based on particle swarm optimization
    Dixit, Abhishek
    Mani, Ashish
    Bansal, Rohit
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (03) : 1571 - 1585
  • [9] Di-DE: Depth Information-Based Differential Evolution With Adaptive Parameter Control for Numerical Optimization
    Meng, Zhenyu
    Yang, Cheng
    Li, Xiaoqing
    Chen, Yuxin
    IEEE ACCESS, 2020, 8 : 40809 - 40827
  • [10] A hybrid gradient-based and differential evolution algorithm for infinite impulse response adaptive filtering
    Yuenyong, Sumeth
    Nishihara, Akinori
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2014, 28 (10) : 1054 - 1064