Automatic Code Generation Tool for Nonlinear Model Predictive Control with Jupyter

被引:4
|
作者
Katayama, S. [1 ]
Ohtsuka, T. [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Syst Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Predictive Control; Optimal Control; Nonlinear Control; Software Tools; ALGORITHM; OPTIMIZATION;
D O I
10.1016/j.ifacol.2020.12.447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an automatic code generation tool, AutoGenU for Jupyter, for nonlinear model predictive control (NMPC) with a user-friendly and interactive interface utilizing JupyterLab and Jupyter Notebook. We utilize a symbolic computation package SymPy for automatic C++ code generation. We also developed numerical solvers of NMPC using the continuation/GMRES (C/GMRES) method and multiple-shooting-based C/GMRES method in C++. AutoGenU for Jupyter provides the simulation environment of NMPC with these solvers and visualization of the simulation results. We give an example of code generation and numerical simulation of a swing-up control of a cart pole using AutoGenU for Jupyter. Copyright (C) 2020 The Authors.
引用
收藏
页码:7033 / 7040
页数:8
相关论文
共 50 条
  • [1] A Tutorial on C/GMRES and Automatic Code Generation for Nonlinear Model Predictive Control
    Ohtsuka, Toshiyuki
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 73 - 86
  • [2] A Parallel Code Generation Toolkit for Nonlinear Model Predictive Control
    Deng, Haoyang
    Ohtsuka, Toshiyuki
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4920 - 4926
  • [3] C Code Generation Applied to Nonlinear Model Predictive Control for an Artificial Pancreas
    Boiroux, Dimitri
    Jorgensen, John Bagterp
    2017 21ST INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2017, : 327 - 332
  • [4] A formulation of nonlinear model predictive control using automatic differentiation
    Cao, Y
    JOURNAL OF PROCESS CONTROL, 2005, 15 (08) : 851 - 858
  • [5] NONLINEAR MODEL PREDICTIVE CONTROL
    PATWARDHAN, AA
    RAWLINGS, JB
    EDGAR, TF
    CHEMICAL ENGINEERING COMMUNICATIONS, 1990, 87 : 123 - 141
  • [6] Integrated nonlinear model predictive control for automated driving
    Chowdhri, Nishant
    Ferranti, Laura
    Iribarren, Felipe Santafe
    Shyrokau, Barys
    CONTROL ENGINEERING PRACTICE, 2021, 106
  • [7] Code generation for embedded predictive control of gas water heaters
    Quinta, Andre
    Conceicao, Cheila
    Martins, Nelson
    Ferreira, Jorge A. F.
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2024, 30 (01) : 73 - 86
  • [8] A perspective on nonlinear model predictive control
    Biegler, Lorenz Theodor
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (07) : 1317 - 1332
  • [9] A Penalty Method Based Approach for Autonomous Navigation using Nonlinear Model Predictive Control
    Hermans, Ben
    Patrinos, Panagiotis
    Pipeleers, Goele
    IFAC PAPERSONLINE, 2018, 51 (20): : 234 - 240
  • [10] A Velocity Algorithm for Nonlinear Model Predictive Control
    Cisneros, Pablo S. G.
    Werner, Herbert
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (03) : 1310 - 1315