Energy Harvesting Circuit for Road Speed Bumps Using a Piezoelectric Cantilever

被引:0
|
作者
Hyun, Ji Hoon [1 ]
Chen, Nan [2 ]
Ha, Dong Sam [1 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
[2] Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Peoples R China
来源
IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY | 2018年
关键词
Energy harvesting; speed bump; buck-boost converter; input voltage detector; impedance matching; sleep-mode;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an energy harvesting circuit for road speed bumps, in which energy is generated from passing over vehicles. As a speed bump energy harvester is mostly idle and generates energy intermittently for a short period, a major design issue is reduction of static power dissipation during the idle time. To address the problem, the proposed circuit adopts sleep mode. A speed bump energy harvester based on a piezoelectric cantilever translates kinetic energy generated by a passing over vehicle into electrical energy. Upon detection of the voltage generated by the piezoelectric cantilever, the proposed circuit wakes up the converter and extracts maximum power from the piezoelectric cantilever through impedance matching. When the piezoelectric cantilever does not generate voltage, i.e., a vehicle is not passing over the speed bump, the circuit shuts down major power hungry blocks to reduce the static power dissipation. The proposed circuit is designed in a 0.18 mu m CMOS technology. Simulation results indicate that the typical static power dissipation of the proposed circuit is only 443 pW for the vehicle speed of 20 km/h, while the power dissipation of the circuit without sleep mode is 16.3 mu W, an increase by a factor of 36,800 times.
引用
收藏
页码:4219 / 4223
页数:5
相关论文
共 50 条
  • [1] Energy harvesting with piezoelectric cantilever
    Yuan, Jiang-bo
    Xie, Tao
    Chen, Wei-shan
    2008 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4 AND APPENDIX, 2008, : 1397 - 1400
  • [2] Harvesting energy from a cantilever piezoelectric beam
    Kim, S
    Johnson, TJ
    Clark, WW
    SMART STRUCTURES AND MATERIALS 2004: DAMPING AND ISOLATION, 2004, 5386 : 259 - 268
  • [3] Piezoelectric Cantilever Prototype for Energy Harvesting in Computing Applications
    Beker, Levent
    Kulah, Haluk
    Muhtaroglu, Ali
    2011 INTERNATIONAL CONFERENCE ON ENERGY AWARE COMPUTING, 2011,
  • [4] Frequency Tuning of Unimorph Cantilever for Piezoelectric Energy Harvesting
    Kim, Hyung-Chan
    Song, Hyun-Cheol
    Jeong, Dae-Yong
    Kim, Hyun-Jai
    Yoon, Seok-Jin
    Ju, Byeong-Kwon
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2007, 17 (12): : 660 - 663
  • [5] Speed Bump with Piezoelectric Cantilever System as Electrical Energy Harvester
    Ekawati, Estiyanti
    Nugraha
    Mardiah, Rahimatul Yusra
    Parmana, Hadi
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2016, : 154 - 159
  • [6] Performance enhancement of a piezoelectric energy harvesting system using a corrugated cantilever beam
    Park, Jeongsu
    Kim, In-Ho
    Jin, SeungSeop
    Koo, Jeong-Hoi
    Jung, Hyung-Jo
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014, 2014, 9057
  • [7] Sustainablemicro-power circuit for piezoelectric energy harvesting tile
    Jabbar, Hamid
    Hong, Seong Do
    Hong, Seong Kwang
    Yang, Chan Ho
    Jeong, Se Yeong
    Sung, Tae Hyun
    INTEGRATED FERROELECTRICS, 2017, 183 (01) : 193 - 209
  • [8] Elastic and Electric Damping Effects on Piezoelectric Cantilever Energy Harvesting
    Huang, Hualin
    Zheng, Chengjunyi
    Ruan, Xuezheng
    Zeng, Jiangtao
    Zheng, Liaoying
    Chen, Wenyuan
    Li, Guorong
    FERROELECTRICS, 2014, 459 (01) : 1 - 13
  • [9] Optimization of the output power of cantilever piezoelectric vibration energy harvesting
    Bai, F.-X. (baifx63@163.com), 1600, Chinese Institute of Electronics (42): : 883 - 889
  • [10] A model for the energy harvesting performance of shear mode piezoelectric cantilever
    Zhou, L.
    Sun, J.
    Zheng, X. J.
    Deng, S. F.
    Zhao, J. H.
    Peng, S. T.
    Zhang, Y.
    Wang, X. Y.
    Cheng, H. B.
    SENSORS AND ACTUATORS A-PHYSICAL, 2012, 179 : 185 - 192