共 58 条
Robust cullin-RING ligase function is established by a multiplicity of polyubiquitylation pathways
被引:35
作者:
Hill, Spencer
[1
]
Reichermeier, Kurt
[2
,3
,4
]
Scott, Daniel C.
[5
]
Samentar, Lorena
[6
,7
]
Coulombe-Huntington, Jasmin
[8
]
Izzi, Luisa
[8
]
Tang, Xiaojing
[9
]
Ibarra, Rebeca
[1
]
Bertomeu, Thierry
[8
]
Moradian, Annie
[10
]
Sweredoski, Michael J.
[10
]
Caberoy, Nora
[6
]
Schulman, Brenda A.
[11
]
Sicheri, Frank
[9
]
Tyers, Mike
[8
]
Kleiger, Gary
[1
]
机构:
[1] Univ Nevada, Dept Chem & Biochem, Las Vegas, NV 89154 USA
[2] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[3] Genentech Inc, Dept Discovery Prote, San Francisco, CA 94080 USA
[4] Genentech Inc, Dept Discovery Oncol, San Francisco, CA 94080 USA
[5] St Jude Childrens Res Hosp, Dept Struct Biol, 332 N Lauderdale St, Memphis, TN 38105 USA
[6] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
[7] Univ Philippines, Iloilo, Philippines
[8] Univ Montreal, Dept Med, Inst Res Immunol & Canc, Montreal, PQ, Canada
[9] Mt Sinai Hosp, Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[10] CALTECH, Beckman Inst, Div Biol & Biol Engn, Proteome Explorat Lab, Pasadena, CA 91125 USA
[11] Max Planck Inst Biochem Mol Machines & Signaling, Martinsried, Germany
来源:
基金:
美国国家卫生研究院;
加拿大健康研究院;
关键词:
F-BOX PROTEINS;
CONJUGATING ENZYMES;
IN-VITRO;
SCF;
SUBSTRATE;
CHAIN;
NEDD8;
UBIQUITYLATION;
PURIFICATION;
EXPRESSION;
D O I:
10.7554/eLife.51163
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The cullin-RING ligases (CRLs) form the major family of E3 ubiquitin ligases. The prototypic CRLs in yeast, called SCF enzymes, employ a single E2 enzyme, Cdc34, to build polyubiquitin chains required for degradation. In contrast, six different human E2 and E3 enzyme activities, including Cdc34 orthologs UBE2R1 and UBE2R2, appear to mediate SCF-catalyzed substrate polyubiquitylation in vitro. The combinatorial interplay of these enzymes raises questions about genetic buffering of SCFs in human cells and challenges the dogma that E3s alone determine substrate specificity. To enable the quantitative comparisons of SCF-dependent ubiquitylation reactions with physiological enzyme concentrations, mass spectrometry was employed to estimate E2 and E3 levels in cells. In combination with UBE2R1/2, the E2 UBE2D3 and the E3 ARIH1 both promoted SCF-mediated polyubiquitylation in a substrate-specific fashion. Unexpectedly, UBE2R2 alone had negligible ubiquitylation activity at physiological concentrations and the ablation of UBE2R1/2 had no effect on the stability of SCF substrates in cells. A genome-wide CRISPR screen revealed that an additional E2 enzyme, UBE2G1, buffers against the loss of UBE2R1/2. UBE2G1 had robust in vitro chain extension activity with SCF, and UBE2G1 knockdown in cells lacking UBE2R1/2 resulted in stabilization of the SCF substrates p27 and CYCLIN E as well as the CUL2RING ligase substrate HIF1 alpha. The results demonstrate the human SCF enzyme system is diversified by association with multiple catalytic enzyme partners.
引用
收藏
页数:32
相关论文