Fast Fisher discriminant analysis with randomized algorithms

被引:24
作者
Ye, Haishan [1 ]
Li, Yujun [1 ]
Chen, Cheng [1 ]
Zhang, Zhihua [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Fisher discriminant analysis; Random projection; Random feature map; CLASSIFICATION;
D O I
10.1016/j.patcog.2017.06.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fisher discriminant analysis is a classical method for classification and dimension reduction jointly. Regularized FDA (RFDA) and kernel FAD (KFDA) are two important variants. However, RFDA will get stuck in computational burden due to either the high dimension of data or the big number of data and KFDA has similar computational burden due to kernel operations. We propose fast FDA algorithms based on random projection and random feature map to accelerate FDA and kernel FDA. We give theoretical guarantee that the fast FDA algorithms using random projection have good generalization ability in comparison with the conventional regularized FDA. We also give a theoretical guarantee that the pseudoinverse FDA based on random feature map can share similar generalization ability with the conventional kernel FDA. Experimental results further validate that our methods are powerful. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 92
页数:11
相关论文
共 32 条
  • [1] [Anonymous], 2013, P MACHINE LEARNING R
  • [2] Generalized discriminant analysis using a kernel approach
    Baudat, G
    Anouar, FE
    [J]. NEURAL COMPUTATION, 2000, 12 (10) : 2385 - 2404
  • [3] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [4] Bingham E., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P245, DOI 10.1145/502512.502546
  • [5] Fast and accurate text classification via multiple linear discriminant projections
    Chakrabarti, S
    Roy, S
    Soundalgekar, MV
    [J]. VLDB JOURNAL, 2003, 12 (02) : 170 - 185
  • [6] Clarkson KL, 2013, STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, P81
  • [7] Cohen MichaelB., 2016, 43 INT C AUTOMATA LA, V11, P1, DOI DOI 10.4230/LIPICS.ICALP.2016.11
  • [8] Dasgupta A, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P230
  • [9] Drineas P, 2012, J MACH LEARN RES, V13, P3475
  • [10] Faster least squares approximation
    Drineas, Petros
    Mahoney, Michael W.
    Muthukrishnan, S.
    Sarlos, Tamas
    [J]. NUMERISCHE MATHEMATIK, 2011, 117 (02) : 219 - 249