Application of recent optimization algorithms to the cancer risk assessment problem.

被引:0
|
作者
Arreola, J [1 ]
Burguete, E [1 ]
De la Llata, R [1 ]
机构
[1] Univ Las Amer Puebla, Dept Ind Engn, Puebla, Mexico
来源
ENVIRONMENTAL ENGINEERING AND HEALTH SCIENCES | 2000年
关键词
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, the use of heuristic algorithms for solving the problem of maximum likelihood estimation of parameters, when data is censored, is explored. We apply modern heuristics that have successfully been used to solve difficult combinatory problems. In particular we use the genetic algorithms and evolutionary programming to compare with the simplex procedure. The data was obtained by simulation. Finally, we discuss the results obtained and the advantage of applying the heuristics to the maximum likelihood problem.
引用
收藏
页码:297 / 303
页数:7
相关论文
共 50 条
  • [1] NEW ALGORITHMS FOR THE LCS PROBLEM.
    Hsu, W.J.
    Du, M.W.
    1600, (29):
  • [2] ALGORITHMS FOR THE MINIMAX TRANSPORTATION PROBLEM.
    Ahuja, R.K.
    1600, (33):
  • [3] The cancer problem.
    Maclachlan, JT
    BRITISH MEDICAL JOURNAL, 1922, 1922 : 1280 - 1280
  • [4] The cancer problem.
    Beard, J
    LANCET, 1905, 1 : 281 - 283
  • [5] The cancer problem.
    Brand, AT
    BRITISH MEDICAL JOURNAL, 1922, 1922 : 1280 - 1280
  • [6] MULTIOBJECTIVE OPTIMIZATION METHOD AND ITS APPLICATION TO DAM CONTROL PROBLEM.
    Masuda, Tatsuya
    Fujii, Katsuhiko
    Transactions of the Institute of Electronics and Communication Engineers of Japan, Section E (English), 1979, E62 (11): : 741 - 748
  • [7] Solution of the Cauchy problem. Methods and algorithms
    Kublanovskaya V.N.
    Journal of Mathematical Sciences, 2000, 101 (4) : 3267 - 3299
  • [8] Computational algorithms for salesman problem. II
    Sergeev, S.I.
    Avtomatika i Telemekhanika, 1994, (06): : 106 - 114
  • [9] Approximate algorithms for the traveling salesman problem. II
    Sergeev, S. I.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (03) : 472 - 479
  • [10] Approximate algorithms for the traveling salesman problem. II
    S. I. Sergeev
    Automation and Remote Control, 2015, 76 : 472 - 479