Knowledge-based validation for hydrological information systems

被引:1
作者
Conejo, Ricardo [1 ]
Guzman, Eduardo [1 ]
Perez-de-la-Cruz, Jose-Luis [1 ]
机构
[1] ETSI Informat, Dept Lenguajes & Ciencias Comp, E-29071 Malaga, Spain
关键词
FAILURE-DETECTION; FAULT-DETECTION; MANAGEMENT; REDUNDANCY; SENSORS; MODEL;
D O I
10.1080/08839510701526582
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The introduction of systems for automatic data acquisition to monitor and control hydrological basins is a qualitative change in the field of hydrology. The large amount of information available increases the number of processes that can be analyzed with a quantitative approach. In the past, hydrological data validation was done manually by applying the knowledge of experts in the field. This article proposes to solve this problem using AI techniques. As a result, a generic model is defined for the cognitive task of data validation. The model is then applied to a real case.
引用
收藏
页码:803 / 830
页数:28
相关论文
共 46 条
  • [1] Agogino A., 1995, P 1995 ANN M ITS AM, P77
  • [2] ALAG S, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P3647
  • [3] A methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnostics
    Alag, S
    Agogino, AM
    Morjaria, M
    [J]. AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2001, 15 (04): : 307 - 320
  • [4] ALONSO M, 1992, P 4 INT C HYDR ENG S
  • [5] [Anonymous], NEURAL NETWORKS CONT
  • [6] AVASARALA V, 2006, P SPIE SMART STRUCT, V6167, P396
  • [7] BANDINI S, P IEMSS 2002, P330
  • [8] BICKFORD RL, 1999, P AIAA ASME SAE ASEE, P99
  • [9] Breuker J., 1994, CommonKADS library for experties modelling: reusable problem solving components
  • [10] Chandrasekaran B., 1986, IEEE Expert, V1, P23, DOI 10.1109/MEX.1986.4306977