Mendelian randomization in cardiometabolic disease: challenges in evaluating causality

被引:452
作者
Holmes, Michael V. [1 ,2 ,3 ,4 ,5 ]
Ala-Korpela, Mika [5 ,6 ,7 ]
Smith, George Davey [5 ,8 ]
机构
[1] Univ Oxford, MRC, Populat Hlth Res Unit, Roosevelt Dr, Oxford OX3 7LF, England
[2] Univ Oxford, Nuffield Dept Populat Hlth, Clin Trial Serv Unit, Big Data Inst Bldg,Old Rd Campus,Roosevelt Dr, Oxford OX3 7BN, England
[3] Univ Oxford, Nuffield Dept Populat Hlth, Epidemiol Studies Unit, Big Data Inst Bldg,Old Rd Campus,Roosevelt Dr, Oxford OX3 7BN, England
[4] Oxford Univ Hosp, Oxford Biomed Res Ctr, Natl Inst Hlth Res, Old Rd, Oxford OX3 7LE, England
[5] Univ Bristol, MRC, Integrat Epidemiol Unit, Oakfield House, Bristol BS8 2BN, Avon, England
[6] Univ Oulu, Fac Med, Computat Med, Aapistie 5A, Oulu 90014, Finland
[7] Univ Oulu, Bioctr Oulu, Aapistie 5A, Oulu 90014, Finland
[8] Univ Bristol, Sch Social & Community Med, Oakfield House, Bristol BS8 2BN, Avon, England
基金
英国医学研究理事会;
关键词
DENSITY-LIPOPROTEIN CHOLESTEROL; CORONARY-HEART-DISEASE; EXTRACELLULAR-SUPEROXIDE DISMUTASE; PLEIOTROPIC GENETIC-VARIANTS; OF-FUNCTION VARIANT; C-REACTIVE PROTEIN; CARDIOVASCULAR-DISEASE; ANTIOXIDATIVE PROTECTION; MULTIPLE-SCLEROSIS; INSULIN-RESISTANCE;
D O I
10.1038/nrcardio.2017.78
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mendelian randomization (MR) is a burgeoning field that involves the use of genetic variants to assess causal relationships between exposures and outcomes. MR studies can be straightforward; for example, genetic variants within or near the encoding locus that is associated with protein concentrations can help to assess their causal role in disease. However, a more complex relationship between the genetic variants and an exposure can make findings from MR more difficult to interpret. In this Review, we describe some of these challenges in interpreting MR analyses, including those from studies using genetic variants to assess causality of multiple traits (such as branched-chain amino acids and risk of diabetes mellitus); studies describing pleiotropic variants (for example, C-reactive protein and its contribution to coronary heart disease); and those investigating variants that disrupt normal function of an exposure (for example, HDL cholesterol or IL-6 and coronary heart disease). Furthermore, MR studies on variants that encode enzymes responsible for the metabolism of an exposure (such as alcohol) are discussed, in addition to those assessing the effects of variants on time-dependent exposures (extracellular superoxide dismutase), cumulative exposures (LDL cholesterol), and overlapping exposures (triglycerides and non-HDL cholesterol). We elaborate on the molecular features of each relationship, and provide explanations for the likely causal associations. In doing so, we hope to contribute towards more reliable evaluations of MR findings.
引用
收藏
页码:577 / 599
页数:14
相关论文
共 151 条
  • [1] Metabolic profiling-multitude of technologies with great research potential, but (when) will translation emerge?
    Ala-Korpela, Mika
    Smith, George Davey
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (05) : 1311 - 1318
  • [2] Cholesterol efflux capacity: An introduction for clinicians
    Anastasius, Malcolm
    Kockx, Maaike
    Jessup, Wendy
    Sullivan, David
    Rye, Kerry-Anne
    Kritharides, Leonard
    [J]. AMERICAN HEART JOURNAL, 2016, 180 : 54 - 63
  • [3] [Anonymous], 2014, NEW ENGL J MED, V371, P2072, DOI DOI 10.1056/NEJMOA1405386
  • [4] Adjusting for Heritable Covariates Can Bias Effect Estimates in Genome-Wide Association Studies
    Aschard, Hugues
    Vilhjalmsson, Bjarni J.
    Joshi, Amit D.
    Price, Alkes L.
    Kraft, Peter
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (02) : 329 - 339
  • [5] Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials
    Baigent, C.
    Blackwell, L.
    Emberson, J.
    Holland, L. E.
    Reith, C.
    Bhala, N.
    Peto, R.
    Barnes, E. H.
    Keech, A.
    Simes, J.
    Collins, R.
    [J]. LANCET, 2010, 376 (9753) : 1670 - 1681
  • [6] Effects of torcetrapib in patients at high risk for coronary events
    Barter, Philip J.
    Caulfield, Mark
    Eriksson, Mats
    Grundy, Scott M.
    Kastelein, John J. P.
    Komajda, Michel
    Lopez-Sendon, Jose
    Mosca, Lori
    Tardif, Jean-Claude
    Waters, David D.
    Shear, Charles L.
    Revkin, James H.
    Buhr, Kevin A.
    Fisher, Marian R.
    Tall, Alan R.
    Brewer, Bryan
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (21) : 2109 - 2122
  • [7] Bowden J., STAT MED, V36
  • [8] Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic
    Bowden, Jack
    Del Greco, Fabiola M.
    Minelli, Cosetta
    Smith, George Davey
    Sheehan, Nuala A.
    Thompson, John R.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2016, 45 (06) : 1961 - 1974
  • [9] Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator
    Bowden, Jack
    Smith, George Davey
    Haycock, Philip C.
    Burgess, Stephen
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (04) : 304 - 314
  • [10] Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
    Bowden, Jack
    Smith, George Davey
    Burgess, Stephen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) : 512 - 525