c-Gluing construction and slices of quasi-Fuchsian space

被引:0
作者
Maloni, Sara [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
Quasi-Fuchsian space; Linear slice; Plumbing construction; Complex projective structure; MINIMA;
D O I
10.1007/s10711-020-00551-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a pants decomposition PC = {o-1,, on a hyperbolizable surface E and a vector c = E, we describe a plumbing construction which endows E with a complex projective structure for which the associated holonomy representation p is quasi-Fuchsian and for which fp(o-i) = ci. When c > 0 = (0,, 0) the holonomy representation associated to this construction limits to the holonomy representation defined by Kra's plumbing construction. In addition, when E = Ei,j, the holonomy representations of these structures belong to the 'linear slice' of quasi-Fuchsian space 0,11E) defined by Komori and Parkonnen. We discuss some conjectures for these slices suggested by the pictures we created in joint work with Yamashita.
引用
收藏
页码:107 / 139
页数:33
相关论文
共 29 条
[1]   Algebraic limits of Kleinian groups which rearrange the pages of a book [J].
Anderson, JW ;
Canary, RD .
INVENTIONES MATHEMATICAE, 1996, 126 (02) :205-214
[2]  
[Anonymous], 1979, PRINCETON LECT NOTES
[3]  
Bers L., 1960, Bull. Amer. Math. Soc., V66, P94, DOI 10.1090/S0002-9904-1960-10413-2
[4]  
Brian H, 1998, P LOND MATH SOC, V77, P697, DOI [10.1112/S0024611598000604, DOI 10.1112/S0024611598000604]
[5]  
Bromberg K, 2001, J DIFFER GEOM, V57, P47
[6]   THE SPACE OF KLEINIAN PUNCTURED TORUS GROUPS IS NOT LOCALLY CONNECTED [J].
Bromberg, Kenneth .
DUKE MATHEMATICAL JOURNAL, 2011, 156 (03) :387-427
[7]  
David D, 2009, IRMA LECT MATH THEOR, V13, P455
[8]  
Earle C.J, 2010, HOLOMORPHIC CO UNPUB
[9]  
Epstein D.B.A., 1987, LONDON MATH SOC LECT, P113
[10]   Non-wrapping of hyperbolic interval bundles [J].
Evans, Richard ;
Holt, John .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (01) :98-119